• Title/Summary/Keyword: Gold alloy

Search Result 233, Processing Time 0.03 seconds

Enhancement of Hardness and Moderation of Surface Defects of 14K, 18K Yellow Gold Alloy by Heat Treatment (열처리에 의한 14K, 18K yellow gold alloy의 경도 향상 및 표면 결함 완화)

  • Ahn, Ji-Hyun;Seo, Jin-Kyo;Ahn, Yoeng-Gil;Park, Jong-Wang
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.2
    • /
    • pp.86-90
    • /
    • 2010
  • In this study, we conducted heat treatment on 14K, 18K yellow gold alloy at various temperature conditions for improving their hardness and moderating their surface defects. Also after the heat treatment we used EPMA (Electron Probe Micro Analyzer), XRF (x-ray Fluorescence spectroscopy) for qualitative analysis and OM (optical microscope), SEM (scanning electron microscope) to investigate the changes of surface grain boundary. We used Vickers hardness tester to verify the changes of hardness. After the heat treatment, 14K, 18K gold alloys showed improved hardness and moderated surface defects at specific temperatures and duration.

A Study on Change of Physical Property in Porcelain Fused to 18K Gold Alloy by Small Additional Elements (도재소부용 18K 금합금의 미량원소의 첨가에 따른 물리적 성질의 변화에 관한 연구)

  • Lee, Kee-Dae
    • Journal of Technologic Dentistry
    • /
    • v.30 no.2
    • /
    • pp.31-37
    • /
    • 2008
  • A variety of the porcelain fused to gold(PFG) have been developed to which porcelain can be fused. PFG alloys developed for this purposed have a high melting point and do not discolor when combined with porcelain. The design of the compositions of PFG is very important to esthetic restorative materials applying to porcelain. The purpose of this study is on the change of physical and mechanical characteristics in PFG 18K alloy by the small additional elements. Principal results are as follows. The high Au alloy containing 18Karat gold contents is respectively Au(75%), Pd(10%), Pt(4%), Ag(4%), In(2%), Sn(2%), Cu(2%), Ti(1%). These alloys are composed mainly of gold, platinum, silver and palladium with a few percent of the additional elements. By the addition of small amounts of elements such as In, Sn, Ti, the fine grain castings are produced in gold alloy and the small addition of platinum is very effective in increasing of hardness and strength. These gold alloys are representative of the changes to be expected as a result of heat treatment. These changes in strength and hardness values are sufficient to demonstrate a significant difference in performance between a as-casted and a heat-treated. These alloys have mechanical properties characteristics of Type and Type gold alloys. These alloys are useful to porcelain-metal restorations and dental laboratory. Also the porcelain fused to metal(PFM) alloys containing gold are commonly use for dental purposes in dental laboratory.

  • PDF

A Scientific Analysis of Gold Crowns in Silla (신라 금관의 성분 조성 분석)

  • Shin, Yongbi;Yu, Heisun;Yun, Eunyoung
    • Conservation Science in Museum
    • /
    • v.16
    • /
    • pp.46-55
    • /
    • 2015
  • This study examines the ratio of alloy components of six gold crowns discovered in six Silla tombs; Gyo-dong, the north tomb of Hwangnamdaechong, Geumgwanchong, Cheonmachong, Geumnyeongchong and Seobongchong. Concretely, the study looks at whether and how crowns from these various tombs differ in terms of the ratio of alloy components. The analysis of the six Silla crowns found that all of them were made of gold and silver alloy. When comparing the ratio of alloy components in crowns and type of crowns, the Gyo-dong crown which is the oldest of them showed the highest content of gold. Crowns from Hwangnamdaechong and Geumgwanchong in the middle to late 5th century, showed a similar content of gold. Gold content of crowns from the late 5th century to early 6th century tombs decreased in order Cheonmachong, Geumnyeongchong and Seobongchong, thus it confirmed that the older the tomb, the higher its gold content.

STRESS OF DENTAL IMPLANT ABUTMENT SCREW BY THE TIGHTENING TORQUE (조임 회전력에 따른 치과 임플랜트 지대나사의 응력에 관한 연구)

  • Lee, Won-Joo;Lim, Ju-Hwan;Cho, In-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.36 no.5
    • /
    • pp.721-737
    • /
    • 1998
  • Abutment screw loosening of implant restorations is a common problem in the treatment of dental implant. The purpose of this study was to calculate stress and preload from the elongation measurements and to determine maximum tightening torque without plastic deformation of the screw. The length of each gold alloy UCLA screw was measured after tightening to the manufacturer's recommended torque of 32 N-cm. Similarity, titanium UCLA screws were measured after tightening to the manufacturer's recommended torque of 20 N-cm. Loosening torque was also measured after tightening to 32 N-cm torque for gold alloy abutment screws and 20 N-cm for titanium abutment screws. The results were as follows ; 1. There was a regressive relationship between screw elongation and tightening torque (gold alloy : $r^2=0.987$, titanium : $r^2=0.978$), and the mean preload calculated from elongation measurements was $501.11{\pm}26.85\;N$ (gold alloy) and $399.43{\pm}7.61\;N$ (titanium). 2. Stress calculated for the gold alloy and titanium screws at maximum recommended tightening torque was less than 60% of their respective yield strengths and with-in the elastic range. Maximum tightening torque without plastic deformation was 61 N-cm (gold alloy) and 39 N-cm (titanium). 3. For titanium screws, there was a significant difference between loosening after trial 1 and loosening after trials 2 to 5 (p<0.05). No statistically significant difference was seen in mean loosening torques between the first and subsequent trials for gold alloy screws.

  • PDF

A STUDY ON THE BOND STRENGTH OF HEAT-CURING ACRYIC RESIN BONDED TO A SURFACE OF CASTED ALLOY (주조 금속 표면과 열 중합 수지 표면간의 결합 강도에 관한 연구)

  • Lee, Yong-Seok;Chang, Ik-Tae
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.34 no.3
    • /
    • pp.620-631
    • /
    • 1996
  • Bonding of resin to cast alloy has traditionally been provided by mechanical retention. But, chemical bonding methods such as silicoating, tin plating, heat treatment, application of 4-META adhesives, have been developed to overcome the problems of the mechanical bonding methods. Silicoating has been used availaby in fixed prosthodontics, but is also reported to be used in removable prosthodontics. The aim of this study is to measure the tensile bond strength between resin and metal, and compare the effect of the type of metal and the grain size of the aluminum oxide on the bond strength, after metal surface roughening, coating of the opaque resin, and curing of heat-curing resin were performed. The test groups were divided into 4 groups according to the cast alloys and the aluminum oxide particles used. Group 1 : Type 4 gold alloy(DM66) blasted with $$50{\mu}m\;Al_{2}O_3$$ Group 2 : Type 4 gold alloy(DM66) blasted with $$250{\mu}m\;Al_{2}O_3$$, Group 3 : Co-Cr alloy(Nobilium) blasted with $$50{\mu}m\;Al_{2}O_3$$ Group 4 : Co-Cr alloy(Nobilium) blasted with $$250{\mu}m\;Al_{2}O_3$$ * 10 test specimens were made on each group. The specimens were thermocycled, and Instron Universal testing machine was used to measure the tensile bond strength of the finished specimens. The results were as follows : 1. Bond strengths showed that the group of gold alloy blasted with $250{\mu}m$ aluminum oxide particle had higher bond strength, and the group of gold alloy blasted with $50{\mu}m$ aluminum oxide particles had lower bond strength than any of the other groups. 2. Gold alloy had significantly higher bond strength when blasted with $250{\mu}m$ aluminum oxide particles than $50{\mu}m$, but. Co-Cr alloy showed no statistically significant difference between the two particle sizes. 3. When blasted with $50{mu}m$ aluminum oxide particles, Co-Cr alloy showed significantly higher bond strength than gold alloy. And, when blasted with $250{\mu}m$ aluminum oxide particles, gold alloy had significantly higher bond strength than Co-Cr alloy. 4. On the examination of the fractured sites, only the group of Co-Cr alloy blasted with $50{\mu}m$ aluminum oxide particles showed a part of residual opaque resin, but all the samples of the other groups fractured between the resin and the metal.

  • PDF

A STUDY ON SURFACE ROUGHNESS OF METALS ACCORDING TO FINISHING AND POLISHING PROCEDURES - AN ATOMIC FORCE MICROSCOPE ANALYSIS - (연마방법에 따른 금속의 활택도에 관한 연구 - Atomic Force Microscope를 이용한 -)

  • Park Won-Kyu;Woo Yi-Hyung;Choi Boo-Byung;Lee Sung-Bok
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.1
    • /
    • pp.1-19
    • /
    • 2003
  • The surface of metals should be as smooth as possible for optimum comfort, oral hygiene, low plaque retention, and resistance to corrosion. In this study five specimens of each precious metal(type III gold alloy, ceramic gold alloy, and Ag-Pd alloy) were divided into five groups according to finishing and polishing procedures : group 1(sandblaster), group 2(group 1+stone), group 3(group 2+brown rubber), group 4(group 3+green rubber), and group 5(group 4+rouge). Six specimens of each non-precious metal(Co-Cr alloy, Ni-Cr alloy, and Co-Cr-Ti alloy) were divided into six groups: group 1(sandblaster), group 2(group 1+hard stone), group 3(group 2+electrolytic polisher), group 4(group 3+brown hard rubber point), group 5(group 4+green hard rubber point), and group 6(group 5+rouge). Considering factors affecting the rate of abrasion, the same dentist applied each finishing and polishing procedure. In addition, the surface roughness of enamel, resin, and porcelain was evaluated. The effect of finishing and polishing procedures on surface roughness of precious and non-precious metals, enamel, resin, and porcelain was evaluated by means of Atomic Force Microscope(AutoProbe CP. Park Scientific Instruments, U.S.A.) that can image the three dimensional surface profile and measure average surface roughness values of each sample at the same time. The obtained results were as follows : 1. According to finishing and polishing procedures, the surface roughness of type III gold alloy, ceramic gold alloy, and Ag-Pd alloy was decreased in the order of group 1, 2, 3, 4, and 5 (P<0.01). 2. According to finishing and polishing procedures. the surface roughness of Co-Cr alloy, Ni-Cr alloy, and Co-Cr-Ti alloy was decreased in the order of group 1, 2, 3, 4, 5, and 6 (p<0.01). 3. There was not statistically significant difference in the surface roughness among three metals of precious metals in group 1 but was significant difference in group 2, 3, 4, and 5 (P<0.05). 4. There was not statistically significant difference in the surface roughness among three metals of non-precious metals in all groups. 5. When the surface roughness of the smoothest surface of each metal, enamel. porcelain, and resin was compared, porcelain was the smoothest and the surface roughness was decreased in the order of Ni-Cr alloy. Co-Cr alloy. Co-Cr-Ti alloy, resin. Ag-Pd alloy, ceramic gold alloy type III gold alloy, and enamel (P<0.01). The results of this study indicate that the finishing and polishing procedures should be carried out in a logical, systematic sequence of steps and the harder non-precious metals may be less resistance to abrasion than are the softer precious metals.

A Study on the Shear Bond Strength of the Reinforced Composite Resin to Dental Alloys (강화형 복합레진과 수종의 치과용 합금간의 전단결합강도에 관한 연구)

  • Kim, Jung-Hee;Jo, In-Ho
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.16 no.2
    • /
    • pp.113-122
    • /
    • 2000
  • The reinforced composte resin as the esthetic operative material continuously has been studied because the porcelain fused metal prosthesis is widely used for its excellent esthetics, rigidity and marginal integrity, but it has low fracture resistance against the tensile strength and stress, attrition of the opposite teeth. The reinforced composite resin is well adapt with the dental alloy but it is low the shear bond strength with the dental alloy vs the porcelain fused metal prosthesis, and then has been studied continuously. The purpose of the study was to examine how metal was the higher shear bond strength among the dental alloy was used to the reinforced composite resin and to find the effect that the particle size of sandblasting influenced the shear bond strength. We built up the reinforced composite resin with 4 mm in diameter, 3 mm in height on circular alloy with 5 mm in diameter, 2 mm in height. Type II gold, type IV gold, and Ag-Pd alloy was used as alloys and $50{\mu}m$, $110{\mu}m$, $250{\mu}m$ of the particle size was sandblasted at each alloy in bonding between alloy and resin. We made 90 secimens of 10 per each group and we measured the shear bond strength using the Instron($M100EC^{(R)}$, Mecmesin Co., England). The obtained results were as follows : 1. In comparison among each alloys, Ag-Pd alloy had the highest shear bond strength and the shear bond strength was decreased significantly in the sequence of the type II gold and type IV gold(P<0.001). 2. In comparison according to the size of sandblasting particle, (1) In Ag-Pd alloy, shear bond strength was decreased in the sequence of $110{\mu}m$, $250{\mu}m$, $50{\mu}m$ and there were significant difference in all the group. (P<0.05) (2) In type II gold, it was decreased in the sequence of $250{\mu}m$, $50{\mu}m$, $110{\mu}m$ and there were significant difference. (P<0.05) (3) In type IV gold, it was decreased in the sequence of $110{\mu}m$, $50{\mu}m$, $250{\mu}m$. There were significant difference between the group of $110{\mu}m$ and $50{\mu}m$, the group of $110{\mu}m$ and 250, but there were no significant difference in the group of $50{\mu}m$ and $250{\mu}m$. 3. The highest shear bond strength according to the size of sandblasting particle was $110{\mu}m$ in Ag-Pd alloy and type IV gold, $250{\mu}m$ in type II gold.

  • PDF

ATTACHMENT AND PROLIFERATION OF HUMAN GINGIVAL FIBROBLASTS ON THE IMPLANT ABUTMENT MATERIALS (임플랜트 지대주 재료에 대한 치은 섬유아세포의 반응)

  • Lim Hyun-Pil;Kim Sun-Hun;Park Sang-Won;Yang Hong-So;Vang Mong-Sook;Park Ha-Ok
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.1
    • /
    • pp.112-123
    • /
    • 2006
  • Purpose: The biocompatibility and bio-adhesive property of a dental implant abutment are important for proper soft tissue healing and maintenance of osseointegration of implant. However, studies of soft tissue healing and mucosal attachment of various materials of implant abutment other than titanium are still needed. In this study, cell attachment, proliferation, cytotoxicity of human gingival fibroblast for ceramic, gold alloy, Ni-Cr alloy and, commercially available pure titanium as a control were evaluated, using MTS and scanning electron microscopy. Materials and Methods: Specimen was designed to disc, 4mm diameter and 1mm thickness, made of ceramic, gold alloy, Ni-Cr alloy and commercially available pure titanium. Primary culture of human gingival fibroblasts were grown in Dulbecco's modified Eagle's medium with 10% fetal bovine serum and 1% antibiotics. Cells were inoculated in the multiwell plates placed the specimen disc. Cell Titer 96 AQucous One Solution Cell Proliferation Assay were done after 1hour 3hours, 24hours, 3days, 5days of incubation. The discs were processed for scanning electron micrography to evaluate cell attachment and morphologic change. Results: The results were obtained as fellows. 1. The ceramic showed high cell attachment and proliferation and low cytotoxicity, which is as much bioadhesive and biocompatible as titanium. 2. The gold alloy represented limited proliferation of human gingival fibroblast and the highest cytotoxicity among tested materials (p<0.05). 3. The Ni-Cr alloy limited the proliferaion of the human gingival fibroblast compared to titanium(p<0.05) but cytotoxicity on the bottom of well was not so considerable, compared to titanium. 4. On the scanning electron micrographs , the ceramic showed good attachment and proliferation of human gingival fibroblast, which was similar to titanium. But gold alloy and Ni-Cr alloy showed the shrinkage of gingival fibroblast both after 24 hours and 3 days. On 5th day, small amount of the human gingival fibroblast proliferation was observed on the Ni-Cr alloy, while the shrinkage of gingival fibroblast was still observed on the gold alloy. Conclusions: These results suggest that the ceramic abutment is as biocompatible as titanium to make proper mucosal seal. The gold alloy has a high cytotoxicity to limit proliferation of gingival fibroblast, which suggest limited use on the anterior tooth where soft tissue healing is recommeded.

Investigating the Au-Cu thick layers Electrodeposition Rate with Pulsed Current by Optimization of the Operation Condition

  • Babaei, Hamid;Khosravi, Morteza;Sovizi, Mohamad Reza;Khorramie, Saeid Abedini
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.172-179
    • /
    • 2020
  • The impact of effective parameters on the electrodeposition rate optimization of Au-Cu alloy at high thicknesses on the silver substrate was investigated in the present study. After ensuring the formation of gold alloy deposits with the desired and standard percentage of gold with the cartage of 18K and other standard karats that should be observed in the manufacturing of the gold and jewelry artifacts, comparing the rate of gold-copper deposition by direct and pulsed current was done. The rate of deposition with pulse current was significantly higher than direct current. In this process, the duty cycle parameter was effectively optimized by the "one factor at a time" method to achieve maximum deposition rate. Particular parameters in this work were direct and pulse current densities, bath temperature, concentration of gold and cyanide ions in electrolyte, pH, agitation and wetting agent additive. Scanning electron microscopy (SEM) and surface chemical analysis system (EDS) were used to study the effect of deposition on the cross-sections of the formed layers. The results revealed that the Au-Cu alloy layer formed with concentrations of 6gr·L-1 Au, 55gr·L-1 Cu, 24 gr·L-1 KCN and 1 ml·L-1 Lauryl dimethyl amine oxide (LDAO) in the 0.6 mA·cm-2 average current density and 30% duty cycle, had 0.841 ㎛·min-1 Which was the highest deposition rate. The use of electrodeposition of pure and alloy gold thick layers as a production method can reduce the use of gold metal in the production of hallow gold artifacts, create sophisticated and unique models, and diversify production by maintaining standard karats, hardness, thickness and mechanical strength. This will not only make the process economical, it will also provide significant added value to the gold artifacts. By pulsating of currents and increasing the duty cycle means reducing the pulse off-time, and if the pulse off-time becomes too short, the electric double layer would not have sufficient growth time, and its thickness decreases. These results show the effect of pulsed current on increasing the electrodeposition rate of Au-Cu alloy confirming the previous studies on the effect of pulsed current on increasing the deposition rate of Au-Cu alloy.

A Scientific Analysis of the Gold Belt with Dangling Ornaments from Seobongchong Tomb (서봉총 금제 과대 및 요패의 성분 분석)

  • Yun, Eunyoung
    • Conservation Science in Museum
    • /
    • v.17
    • /
    • pp.17-42
    • /
    • 2016
  • A scientific analysis was performed on the gold belt with eight dangling ornaments discovered in the large Silla period Seobongchong Tomb. The object's gold sheets, nails, curved ornaments and gold wire were analyzed separately. Results show that all the components are gold-silver alloy, each varying in overall alloy composition. Gold sheets of two different gold contents are used for the belt, 17-18K gold and 19-20K gold, this seemingly by design. Nails are 20K gold, while the curved ornaments and gold wire of the belt are mostly 18K gold. Gold sheets for the dangling ornaments are mainly of 17-19K gold. Connecting rings used in the dangling ornaments are 17-19K gold, nails 17-20K gold and the curved ornaments and wire 19K gold.