• Title/Summary/Keyword: Goat Oocytes

Search Result 24, Processing Time 0.02 seconds

Secretory Proteins from Goat Oocytes Matured in Culture

  • Malakar, Dhruba;Majumdar, A.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.3
    • /
    • pp.340-345
    • /
    • 2002
  • In this experiment, oocytes were collected from goat ovaries available in slaughterhouse by follicle puncture method. Morphologically culturable type of oocytes which having compact, multilayered cumulus granulosa cell complex and evenly granulated cytoplasm, was separated under a stereozoom microscope. Oocytes were washed thoroughly in maturation medium containing TCM-199, $1{\mu}g/ml$ estradiol-$17{\beta}$, 0.5 ${\mu}g/ml$ FSH, $100{\mu}g/ml$ LH, 3 mg/ml BSA and 10% estrus goat serum. Washed oocytes were cultured into maturation medium on granulosa cell monolayer. Culture plate was then kept into $CO_2$ incubator at $38{\pm}1^{\circ}C$, maximum humidity and 5% $CO_2$ for 18 h. After maturation the oocytes were washed thoroughly with maturation medium containing polyvinyl alcohol (PVA) without serum and BSA and further cultured for 12 h for secretory proteins of oocytes. PVA medium was collected, pooled and concentrated by 5000 cut off centrisart. Secretory proteins were separated on 12.5% SDS-PAGE. A total number of 3.41 oocytes per ovary were obtained and 2.17 culturable oocytes per ovary were cultured into maturation medium. After 18 h of maturation, 4,567 oocytes (1.82 oocytes per ovary) were further cultured into serum and BSA free PVA medium for its secretory proteins. Four secretory proteins of oocytes with approximately molecular weight of 45, 55, 65 and 95 kDa were obtained on SDS-PAGE in silver staining and three proteins with approximately molecular weight of 45, 55 and 65 kDa in Coomassie brilliant blue staining. In conclusion, four secretory proteins with approximately molecular weight of 45, 55, 65 and 95 kDa was obtained from in vitro cultured oocytes of goats.

Seasonal Changes in Concentrations of Proteins and Lipids in Growing Goat Oocytes

  • Sangha, G.K.;Bhatia, H.;Khera, K.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.1
    • /
    • pp.36-40
    • /
    • 2007
  • Proteins and lipids not only provide a source of energy to the cell, but also play vital roles in modifying the physical properties and function of the biological membranes. In the present study, we investigated the biochemical constituents, viz. proteins and lipids, in growing oocytes of goat antral follicles during summer and winter seasons. Goat genitalia in phosphate buffered saline (pH 7.4) were brought to the laboratory within one hour of slaughter under aseptic conditions at $37^{\circ}C$. Oocytes were aspirated from normal small (<3 mm in diameter) and large (>3 mm) follicles and pooled for biochemical estimations. A significant increase in the amount of protein and lipid was observed with the growth of the oocyte. The amount of protein varied non-significantly with the season, while the amount of lipid varied significantly. The amounts of phospholipid, cholesterol, free fatty acid, and triglyceride increased with the growth of the oocyte, but no significant effect of season in these constituents was observed. Lysolecithin, sphingomyelin, and sterols were the polar lipids identified in both oocytes prepared from small follicles (small oocytes) as well as large follicles (large oocytes). In addition, the small oocytes also contained phosphatidyl serine, while large oocytes contained phosphatidyl glycerol phosphate and phosphatidyl inositol. Among non-polar lipids, triglycerides and long chain alcohols appear only in small oocytes and not in large oocytes. Monoglycerides, 1,2-diglycerides, 1,3-diglycerides and o-dialkyl glycerol ethers, fatty acids, fatty acid methyl esters, and wax esters were identified in both small and large oocytes. Information on biochemical composition of growing oocytes is relevant to oocyte and embryo competence, culture and cryopreservation.

The Suppression of Maturational Competence by Streptomycin during In vitro Maturation of Goat Follicular Oocytes

  • Kang, Jae Ku;Chang, Suk Min;Naruse, Kenji;Han, Jeung Whan;Park, Chang Sik;Jin, Dong Il
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.8
    • /
    • pp.1076-1079
    • /
    • 2004
  • Antibiotics are common additives in culture media during in vitro embryo development, but their effects on oocyte maturation in vitro have not been tested. The effects of penicillin, streptomycin and gentamicin on the maturational competence and subsequent development potential of goat follicular oocytes were examined after parthenogenetic activation in vitro. Maturation rates at 24 h after in vitro maturation, and parthenogenetic development at 48 h after activation, were evaluated by observing the protruding first polar body and the 4 cell stage cleavage, respectively. When streptomycin was present in the maturation medium, the percentages of matured oocytes 24 h after activation were significantly (p<0.01) lower than those from the other groups (42.5-45.7% vs. 69.1-73.8%). Penicillin and gentamicin treatment did not affect the maturation rates or the percentages reaching the 4 cell stage 48 h after activation. There was no significant difference in cleavage rates among the different antibiotic treatments 48 h after activation. Therefore, streptomycin suppresses the in vitro maturation of immature goat oocytes, but does not influence their subsequent development.

In Vitro Development of Interspecies Nuclear Transfer Embryos using Porcine Oocytes with Goat and Rabbit Somatic Cells

  • Quan, Yan Shi;Naruse, Kenji;Choi, Su-Min;Kim, Myung-Youn;Han, Rong-Xun;Park, Chang-Sik;Jin, Dong-Il
    • Reproductive and Developmental Biology
    • /
    • v.32 no.4
    • /
    • pp.249-253
    • /
    • 2008
  • Interspecies somatic cell nuclear transfer (iSCNT) is a valuable tool for studying the interactions between an oocyte and somatic nucleus. The object of this study was to investigate the developmental competence of in vitro-matured porcine oocytes after transfer of the somatic cell nuclei of 2 different species (goat and rabbit). Porcine cumulus oocytes were obtained from the follicles of ovaries and matured in TCM-199. The reconstructed embryos were electrically fused with 2 DC pulses of 1.1kV/cm for $30{\mu}s$ 0.3M mannitol medium. The activated cloned embryos were cultured in porcine zygote medium-3 (PZM-3), mSOF or RDH medium for 7 days. The blastocyst formation rate of the embryos reconstructed from goat or rabbit fetal fibroblasts was significantly lower than that of the embryos reconstructed from porcine fetal fibroblast cells. However, a significantly higher number of embryos reconstructed from goat or rabbit fetal fibroblasts cultured in mSOF or RDH, respectively, developed to the morular stage than those cultured in PZM-3. These results suggest that goat and bovine fetal fibroblasts were less efficacious than porcine-porcine cloned embryos and that culture condition could be an important factor in iSCNT. The lower developmental potential of goat-porcine and porcine-bovine cloned embryos may be due to incompatibility between the porcine oocyte cytoplasm and goat and bovine somatic nuclei.

$In$ $Vitro$ Development of Goat Parthenogenetic Oocytes Derived from Different Activation Methods (도축장 유래 산양난자의 단위 발생 유기 방법에 따른 체외 발달)

  • Yun, Yun-Jin;Park, Kyeong-Jin;Park, Hee-Sung
    • Journal of Embryo Transfer
    • /
    • v.27 no.1
    • /
    • pp.57-62
    • /
    • 2012
  • Efficient oocyte activation is a key step for the success of nuclear transfer in cloning. Ionomycin sequentially combined with 6-DMAP is now widely used to activate normal oocytes for analytical studies of oocyte activation and to activate reconstructed oocytes after nuclear transfer. The present study investigated sources of oocytes, duration of ionomycin and 6-DMAP, laser and electric stimulation in goat oocyte activation in order to optimize the protocols. Goat ovaries were collected in individual abattoirs during the breeding season and were delivered to the laboratory within 6 h in saline with 100 IU/ml streptomycin and 0.05 mg/ml penicillin. The oocytes were denuded from the cumulus cell by pipetting with 0.2% hyaluronidase in PBS at 20~22 hr post maturation. Oocytes with the polar body were selected and assigned to four groups for parthenogenetic activation. To examine the effect of duration of ionomycin treatment, oocytes after 20~22 hr of maturation were treated with 2.5 uM ionomycin for 1 or 5 min times and then cultured in 2 mM 6-DMAP for 2 or 4 hr. The activated oocytes were cultured in mSOF at $38.5^{\circ}C$ in $CO_2$ 5%, $O_2$ 5% and $N_2$ 90% multi incubator. Cleavage and blastocyst development was observed at 48 hr and day 8 of culture $in$ $vitro$, respectively. Activation rates of oocytes exposed to ionomycin for 1 min(86.4%) were significantly higher than those treated for 5 min(74.3%) duration. This indicated that 1 min ionomycin treatment was most suitable for activation of goat oocytes. The duration of 6-DMAP treat duration was in 2 mM 6-DMAP for 2 hr after 1 min exposure to 2.5 uM ionomycin. The activation rate of oocytes incubated in 6-DMAP for 2 hour(82.5%) was significantly higher than those in oocytes treated with 4 hr(75.5%).

Production of Kids from In vitro Fertilized Goat Embryos and Their Parentage Assessment Using Microsatellite Markers

  • Malakar, D.;Das, S.K.;Mukesh, M.;Sodhi, M.;Goswami, S.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.6
    • /
    • pp.842-849
    • /
    • 2007
  • The purpose of the present study was to produce live offspring from in vitro fertilized goat embryos. Oocytes were collected from abattoir ovaries and kept in oocyte collection medium. Oocytes were washed 4-5 times with maturation medium containing medium-199 with 5 ${\mu}g/ml$ FSH, 100 ${\mu}g/ml$ LH, 1 ${\mu}g/ml$ estradiol-$17{\beta}$ 50 ${\mu}g/ml$ gentamycin, 10% inactivated estrus goat serum, and 3% BSA (fatty acid free). Oocytes were placed in 100 ${\mu}l$ drops of maturation medium containing granulosa cell monolayer and incubated in a 5% $CO_2$ incubator at $38.5^{\circ}C$ for 27 h. For capacitation of spermatozoa fresh semen was processed and mixed in 3 ml fertilization TALP medium containing 50 ${\mu}g/ml$ heparin and kept in the above incubator for 2 h. The capacitated spermatozoa were coincubated with matured oocytes for fertilization. Cleaved embryos were separated and cultured in embryo development medium with oviductal cells and 494 embryos were produced. Recipient goats were synchronized with two injections of 15 mg $PGF_{{2}{\alpha}}$/goat 10 days apart. Eighty early stage embryos were transferred into the uterotubal junction of 14 surrogate mothers using laparoscopy techniques. One recipient delivered twin kids, whereas another two recipients each.delivered a single kid The parentage of these kids was evaluated using highly polymorphic co-dominant microsatellites markers. From the present study, it was concluded that live goat kids can be produced from in vitro matured and fertilized goat embryos, to the best of our knowledge for the first time in India.

Parthenogenetic Activation of Black Bengal Goat Oocytes

  • Haque, Aminul;Bhuiyan, Mohammad Musharraf Uddin;Khatun, Momena;Shamsuddin, Mohammed
    • Journal of Embryo Transfer
    • /
    • v.26 no.2
    • /
    • pp.123-128
    • /
    • 2011
  • In vitro maturation and activation of oocytes are primary steps towards biotechnological manipulation in embryology. The objectives of the present study were to determine the oocyte recovery rate per ovary, in vitro maturation rates of oocytes and rates of parthenogenetically activation of matured oocytes in Black Bengal goats. All visible follicles were aspirated to recover follicular fluid from individual ovaries (number of ovaries = 456). The immature cumulus oocyte complexes (COCs; n = 1289) were cultured in tissue culture medium (TCM)-199 supplemented with 10% (v/v) fetal bovine serum (FBS) for 27 hours at $39^{\circ}C$ with 5% $CO_2$ in humidified air. The matured oocytes (n = 248) were activated with 5 ${\mu}M$ ionomycin for 5 minutes followed by treatment with 2 mM 6-dimethylaminopurine (6-DMAP) for 4 hours. After activation, oocytes were cultured for another 14 hours in TCM-199 supplemented with bovine serum albumin (BSA) at $39^{\circ}C$ with 5% $CO_2$ in humidified air. The pronucleus formation in activated oocytes was determined by staining with 1% orcein (whole mount technique). Matured oocytes (n = 176) without activation stimuli were used as control. The mean number of oocytes recovered per ovary was $3.5{\pm}0.5$. The proportion of oocytes matured in vitro, confirmed by the presence of first polar body, was $42.1{\pm}4.7%$. Parthenogenetic activation, evidenced by formation of pronucleus, occurred in $37.2{\pm}15.8%$ of matured oocytes. No pronucleus formation was observed in control oocytes. In conclusion, a combination of ionomycin and 6-DMAP induces activation in one third of Black Bengal goats' oocytes.

Production of Cloned Korean Native Goat (Capra hircus) by Somatic Cell Nuclear Transfer

  • Park, H.S.;Jung, S.Y.;Kim, T.S.;Park, J.K.;Moon, T.S.;Hong, S.P.;Jin, J.I.;Lee, J.S.;Lee, J.H.;Sohn, S.H.;Lee, C.Y.;Moon, Y.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.4
    • /
    • pp.487-495
    • /
    • 2007
  • The objectives of the present study were to initiate cloning of Korean native goat by somatic cell nuclear transfer (NT) and to examine whether unovulated (follicular) oocytes can support the same developmental ability of NT embryos as ovulated (oviductal) oocytes after hCG injection in stimulated cycles of the goat. The in vivo-matured and immature oocytes were collected from the oviducts and follicles of superovulated does, respectively, and the immature oocytes were maturated in vitro. Ear skin fibroblasts derived from a 3-yr-old female Korean native goat were used as the donors of nuclei or karyoplasts. Following fusion, activation and in vitro culture to a 2- to 4-cell stage, 49 in vitro-derived and 105 in vivo-derived embryos were transferred to 6 and 17 recipient does, respectively. One doe and three does of the respective groups were identified as pregnant by ultrasonography on day 30 after embryo transfer. However, only one doe, which had received in vivo-derived embryos, delivered a normal female kid of 1.9 kg on d 149. The cloned kid gained more weight than her age-matched females as much as 87% during the first 4 mo after birth (17.7 vs. $9.4{\pm}0.8$ kg) and reached puberty at 6-mo age a few months earlier than normal female does. The telomere length of the kid, which was similar to that of the donor fibroblast at 2-mo age, decreased 8% between 2- and 7-mo ages. Moreover, at 7-mo age, she had 21% shorter telomere than her age-matched goats. To our knowledge, this is the first case in which a cloned animal born with a normal weight exhibited accelerated growth and development. The unusually rapid growth and development of the cloned goat may have resulted from SCNT-associated epigenetic reprogramming involving telomere shortening.

Effect of Non Breeding Season on Oocyte Recovery from Superovulated Korean Native Goats (재래산양의 비번식기에 과배란 처리에 의한 난자 회수와 단위발생란의 체외발달)

  • Yun, Yun Jin;Park, Hee Sung
    • Journal of Embryo Transfer
    • /
    • v.28 no.1
    • /
    • pp.19-24
    • /
    • 2013
  • This study assesses of efficiency of oocyte recovery and in vitro development for during the non breeding season in goat. Thirty-four matured goats, maintained in a pen under natural day length and fed hay ad libitum, were pretreated with progestagen implanted CIDR for 10 days. Superovulation treatment of the goats received twice daily intramuscular injections of a total of 70 mg FSH for 3 days from Day 8 of CIDR. All the gonadotropin treated goats were injected with 10 mg $PGF_2{\alpha}$ on Day 8 and 400~600 IU hCG in the afternoon on Day 10. Oocytes were recovered by follicle aspiration or oviduct flushing at 35 to 40 h after hCG injection through mid-ventral incision. The in vivo matured oocytes were activated by ionomycin (5 min) and 6-DMAP (3.5~4 h). The activated oocytes were cultured in mSOF medium containing 0.8% BSA at $38.5^{\circ}C$ in an atmosphere of 5% $CO_2$, 5% $O_2$, 90% $N_2$ for 7~8 days. There was no significant difference in the mean number of CL and in vivo matured and follicular oocytes recovered. But, quality of I+II grade follicular oocytes was lower (p<0.05) in the prepubertal goat (25.0%) than the adults (52.4%). The same results were also observed in the cleavage and blastocyst rate of activated oocytes. The clavage and blastocyst rate from prepubertal derived oocytes were lower (p<0.05) in the prepubertal goat (54.5%, 23.3%) than the adult goat (86.8%, 46.6%). Considering overall these results, we suggest that maturation of donor goats is a major factor affecting recovered oocytes quality and in vitro development of activated goat oocytes. There was no significant difference in oocyte quality between seasonal treatments.

Influence of blood serum, follicular fluid and gonadotropin on in vitro maturation for goat oocytes (혈청과 난포액 및 성선자극호르몬 첨가가 염소 난자의 체외성숙에 미치는 영향)

  • Lee, Sang-Hoon;Jeon, Dayeon;Lee, Jinwook;Lee, Sung-Soo;Kim, Seungchang;Kim, Chan-Lan;Kim, Kwan-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.333-340
    • /
    • 2019
  • This study investigated the effects of goat blood serum (gBS), goat follicular fluid (gFF) and gonadotropin (FSH) on the in vitro maturation, fertilization and development of Korean native black goat oocytes. Our results indicate that the gBS combined with FSH treated group showed significantly higher maturation rate than the other groups. Furthermore, blastocyst formation rate was significantly increased in all treated groups, and gBS and gFF combined with FSH treated groups were higher than other groups. However, gene expression levels of BMP15 and GDF9 in COC, both oocyte maturation related genes, remained unaffected after 24 h maturation. The results of the present study indicate that supplementation of the maturation medium with gBS, gFF and FSH is efficacious in improving the in vitro maturation, fertilization and development of Korea native black goat oocytes.