• 제목/요약/키워드: Goat Embryos

검색결과 25건 처리시간 0.021초

In Vitro Development of Interspecies Nuclear Transfer Embryos using Porcine Oocytes with Goat and Rabbit Somatic Cells

  • Quan, Yan Shi;Naruse, Kenji;Choi, Su-Min;Kim, Myung-Youn;Han, Rong-Xun;Park, Chang-Sik;Jin, Dong-Il
    • Reproductive and Developmental Biology
    • /
    • 제32권4호
    • /
    • pp.249-253
    • /
    • 2008
  • Interspecies somatic cell nuclear transfer (iSCNT) is a valuable tool for studying the interactions between an oocyte and somatic nucleus. The object of this study was to investigate the developmental competence of in vitro-matured porcine oocytes after transfer of the somatic cell nuclei of 2 different species (goat and rabbit). Porcine cumulus oocytes were obtained from the follicles of ovaries and matured in TCM-199. The reconstructed embryos were electrically fused with 2 DC pulses of 1.1kV/cm for $30{\mu}s$ 0.3M mannitol medium. The activated cloned embryos were cultured in porcine zygote medium-3 (PZM-3), mSOF or RDH medium for 7 days. The blastocyst formation rate of the embryos reconstructed from goat or rabbit fetal fibroblasts was significantly lower than that of the embryos reconstructed from porcine fetal fibroblast cells. However, a significantly higher number of embryos reconstructed from goat or rabbit fetal fibroblasts cultured in mSOF or RDH, respectively, developed to the morular stage than those cultured in PZM-3. These results suggest that goat and bovine fetal fibroblasts were less efficacious than porcine-porcine cloned embryos and that culture condition could be an important factor in iSCNT. The lower developmental potential of goat-porcine and porcine-bovine cloned embryos may be due to incompatibility between the porcine oocyte cytoplasm and goat and bovine somatic nuclei.

Sexing Goat Embryos by PCR Amplification of X- and Y- chromosome Specific Sequence of the Amelogenin Gene

  • Chen, A-qin;Xu, Zi-rong;Yu, Song-dong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제20권11호
    • /
    • pp.1689-1693
    • /
    • 2007
  • The objective of this study was to develop a simplified, efficient, and accurate protocol for sexing goat embryos. Based on the amelogenin gene located on the conservation region of X- and Y- chromosomes, a pair of primers was utilized and the system of PCR was established to amplify a 262 bp fragment from the X- chromosome in female goats, and a 262 bp fragment from X- chromosome and 202 bp fragment from the Y- chromosome in male goats, respectively. The accuracy and specificity of the primers were assessed using DNA template extracted from goat whole blood sample of known sex. 100% (10/10) concordance was obtained by using the PCR assay. Fifty-one biopsied embryos were transferred into 25 recipient goats on the same day that the embryos were collected and sex of the kid was confirmed after parturition. Eighteen kids of predicted sex were born. The biopsied samples from 51 goat embryos were amplified with 100% efficiency and 94.7% accuracy. In conclusion, our results indicated that PCR sexing protocols based on the amelogenin gene is highly reliable and suitable for sex determination of goats.

Production of Kids from In vitro Fertilized Goat Embryos and Their Parentage Assessment Using Microsatellite Markers

  • Malakar, D.;Das, S.K.;Mukesh, M.;Sodhi, M.;Goswami, S.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제20권6호
    • /
    • pp.842-849
    • /
    • 2007
  • The purpose of the present study was to produce live offspring from in vitro fertilized goat embryos. Oocytes were collected from abattoir ovaries and kept in oocyte collection medium. Oocytes were washed 4-5 times with maturation medium containing medium-199 with 5 ${\mu}g/ml$ FSH, 100 ${\mu}g/ml$ LH, 1 ${\mu}g/ml$ estradiol-$17{\beta}$ 50 ${\mu}g/ml$ gentamycin, 10% inactivated estrus goat serum, and 3% BSA (fatty acid free). Oocytes were placed in 100 ${\mu}l$ drops of maturation medium containing granulosa cell monolayer and incubated in a 5% $CO_2$ incubator at $38.5^{\circ}C$ for 27 h. For capacitation of spermatozoa fresh semen was processed and mixed in 3 ml fertilization TALP medium containing 50 ${\mu}g/ml$ heparin and kept in the above incubator for 2 h. The capacitated spermatozoa were coincubated with matured oocytes for fertilization. Cleaved embryos were separated and cultured in embryo development medium with oviductal cells and 494 embryos were produced. Recipient goats were synchronized with two injections of 15 mg $PGF_{{2}{\alpha}}$/goat 10 days apart. Eighty early stage embryos were transferred into the uterotubal junction of 14 surrogate mothers using laparoscopy techniques. One recipient delivered twin kids, whereas another two recipients each.delivered a single kid The parentage of these kids was evaluated using highly polymorphic co-dominant microsatellites markers. From the present study, it was concluded that live goat kids can be produced from in vitro matured and fertilized goat embryos, to the best of our knowledge for the first time in India.

Integration and Expression of Goat ${\beta}-Casein/hGH$ Hybrid Gene in a Transgenic Goat

  • Lee, Chul-Sang;Lee, Doo-Soo;Fang, Nan-Zhu;Oh, Keon-Bong;Shin, Sang-Tae;Lee, Kyung-Kwang
    • Reproductive and Developmental Biology
    • /
    • 제30권4호
    • /
    • pp.293-299
    • /
    • 2006
  • In order to generate transgenic goats expressing human growth hormone (hGH) in their mammary glands, goat ${\beta}-Casein/hGH$ hybrid gene was introduced into goat zygotes by pronuclear microinjection. DNA-injected embryos were transferred to the oviduct of recipients at 2-cell stage or to the uterus at morula/blastocyst stage after cultivation in glutathione-supplemented mSOF medium in vitro. Pregnancy and survival rate were not significantly different between 2-cell embryos and morula/blastocysts transferred to oviduct and uterus, respectively. One transgenic female goat was generated from 153 embryos survived from DNA injection. Southern blot analysis revealed that the transgenic goat harbored single-copy transgene with a partial deletion in its sequences. Despite of the partial sequence deletion, the transgene was successfully expressed hGH at the level of $72.1{\pm}15.1{\mu}g/ml$ in milk throughout lactation period, suggesting that the sequence deletion had occurred in non-essential part of the transgene for the transgene expression. Unfortunately, however, the transgene was not transmitted to her offspring during three successive breeding seasons. These results demonstrated that goat ${\beta}-casein/hGH$ gene was integrated into the transgenic goat genome in a mosaic fashion with a partial sequence deletion, which could result in a low level expression of hGH and a failure of transgene transmission.

한국재래흑염소 수정란의 이식;형질전환 흑염소 생산을 위한 수정란의 채취와 이식 (Embryo transfer in Korean Native Black Goat;Embryo recovery and transfer for the production of transgenic goat)

  • 신상태
    • 한국수정란이식학회:학술대회논문집
    • /
    • 한국수정란이식학회 2000년도 춘계심포지움
    • /
    • pp.64-75
    • /
    • 2000
  • During the last three decades considerable advances has been made in goat embryo production and transfer technology. The Korean native black goat is the most useful domestic ruminant in this country for biological investigation and application because it has a lot of merits such as relatively short generation period (1 vs 2 year for a cow), easy of handling, well adaptation, high fertility, convenient and inexpensive. This article covers the methods of superovulation, estrus synchronization, embryo collection and transfer techniques, pregnancy diagnosis and subsequent pregnancy and kidding rates for the production of transgenic Korean native black goats. More than one hundred goat kids have been produced as a result of our transgenic goat project via microinjection of foreign gene into pronuclei, in vitro culture, transfer of various stages of fresh and frozen-thawed microinjected embryos into oviducts or uteri of recipient does. We have got two transgenic goats carrying a transgene targeting the expression of recombinant human granulocyte colony stimulating factor (hG-CSF) to the mammary gland so far. Since collection and transfer of embryos in this species is usually accomplished by laparotomy, exteriorization of the reproductive tract for surgical embryo collection leads to the formation of post-operative adhesions. Nonsurgical or laparoscopic technique to reduce adhesions from repeated surgeries has great advantages in improving embryo production and transfer especially from valuable donors. We will discuss this later.

  • PDF

한국재래흑염소 수정란의 이식: 형질전환 흑염소 생산을 위한 수정란의 채취와 이식 (Embryo transfer in Korean Native Black Goat: Embryo recovery and transfer for the production of transgenic goat)

  • 신상태
    • 한국수정란이식학회:학술대회논문집
    • /
    • 한국수정란이식학회 2000년도 수정란의 위생적 처리·검사 및 특수가축의 수정란이식 기술 심포지움
    • /
    • pp.64-75
    • /
    • 2000
  • During the last three decades considerable advances has been made in goat embryo production and transfer technology. The Korean native black goat is the most useful domestic ruminant in this country for biological investigation and application because it has a lot of merits such as relatively short generation period(1 vs 2 year for a cow), easy of handling, well adaptation, high fertility, convenient and inexpensive. This article covers the methods of superovulation, estrus synchronization, embryo collection and transfer techniques, pregnancy diagnosis and subsequent pregnancy and kidding rates for the production of transgenic Korean native black goats. More than one hundred goat kids have been produced as a result of our transgenic goat project via microinjection of foreign gene into pronuclei, in vitro culture, transfer of various stages of fresh and frozen-thawed microinjected embryos into oviducts or uteri of recipient does. We have got two transgenic goats carrying a transgene targeting the expression of recombinant human granulocyte colony stimulating factor(hG-CSF) to the mammary gland so far. Since collection and transfer of embryos in this species is usually accomplished by laparotomy, exteriorization of the reproductive tract for surgical embryo collection leads to the formation of post-operative adhesions. Nonsurgical or laparoscopic technique to reduce adhesions from repeated surgeries has great advantages in improving embryo production and transfer especially from valuable donors. We will discuss this later.

  • PDF

Laparoscopic Transabdominal Transfer of Blastocysts in Korean Black Goats

  • Cho, Sang-Cheol;Cho, Jong-Ki;Shin, Sang Tae
    • 한국수정란이식학회지
    • /
    • 제32권2호
    • /
    • pp.47-52
    • /
    • 2017
  • As a part of the effort to improve post-transfer survival rate of embryos in Korean black goats, a technique for laparoscopic uterine transfer of blastocysts was carried out. A total of 26 transferrable embryos (morula to expanded blastocysts) were transferred to 13 recipient goats via transabdominal laparoscopic method. In consequence of our hormone protocol, 65% of the recipients (13/20) were found to have synchronized estrus. After confirmation of corpus luteum in each recipient goat, a Babcock laparoscopic forceps was inserted into the lower abdominal cavity to hold a uterine horn and fasten it near the peritoneum without causing injury. Then 7.5cm long 16G IV catheter was inserted directly into the uterine lumen through the abdominal wall. After removal of the stylet of the IV catheter, the embryo transfer tube (identical in size to the stylet and loaded with blastocysts) was inserted into the uterine lumen through the catheter to unload the embryos. Of the 13 estrus synchronized recipients, 9 were transferred blastocysts and 4 were transferred molurae (2 embryos in each recipient) in uterine ipsilateral to the ovary with corpus luteum. Four of the 9 recipients which blastocysts were transferred using this method has been confirmed pregnant (44.4% pregnancy rate).

유산양 체세포를 이용한 돼지 난자의 이종간 핵이식 후 배발달에 관한 연구 (In vitro Development Potential Following Nuclear Transfer of Porcine Interspecies Clone Embryo by Goat Somatic Cells)

  • 장석민;나루세겐지;신영민;박창식;진동일
    • 농업과학연구
    • /
    • 제33권1호
    • /
    • pp.35-41
    • /
    • 2006
  • 이종간의 핵이식은 확보가 쉬운 난자를 이용함으로서 용이한 수핵란의 확보와 윤리적인 문제등을 피할 수 있으므로 매우 유용한 방법이다. 본 연구에서는 이러한 이종간 핵이식의 조건을 규명하고자 유산양 태아섬유아세포를 이용하여 돼지의 난자에 이종간 핵이식을 시도하였다. 돼지와 산양의 난소에서 난포란을 채취하여 각각 NCSU-23, TCM-199에 호르몬을 첨가한 성숙배양액에 배양하여 $38^{\circ}C$, 5% $CO_2$의 배양기에서 48시간 동안 체외성숙 시켜 수핵난자를 준비하였다. 공여세포는 유산양의 태아섬유아세포는 DMEM배양액에서 배양한 후 0.25% Trypsin-EDTA 용액으로 처리하여 single-cell로 분리하여 사용하였다. 돼지와 산양의 성숙란에 공여세포를 핵치환하여 0.3 M mannitol fusion medium에 넣어 각각 DC 1.2 kV/cm $30{\mu}sec$과 DC 2.39 kV/cm $15{\mu}sec$의 조건으로 BTX를 이용 2회의 전기충격으로 융합 활성화하였다. 활성화된 돼지와 산양 핵이식란은 각각 PZM-3와 mSOF 배양액에 7일간 배양하면서 할구분열율과 배발달율을 관찰하여 동종간 핵이식란과 비교하였다. 비교결과 이종간 핵이식란의 경우 분열률이 58.9%, 배반포기로의 발달률이 5.4%로 돼지 동종간 핵이식란의 분열율이 67.4%, 배반포기로의 배발달율은 13.6% 보다 낮게 나타났고, 또한 산양의 동종간 핵이식란배아의 분열율 81%, 상실배와 배반포기로의 발달률이 54.7% 보다 낮게 나타났다. 이러한 결과로 이종간의 이식은 많은 잇점에도 불구하고 아직은 낮은 배발달률을 보이고 있어 이에 대한 핵이식 조건 및 체외배양 조건 등 많은 부분에서의 추가적인 연구가 필요한 것으로 사료된다.

  • PDF

Production of Cloned Korean Native Goat (Capra hircus) by Somatic Cell Nuclear Transfer

  • Park, H.S.;Jung, S.Y.;Kim, T.S.;Park, J.K.;Moon, T.S.;Hong, S.P.;Jin, J.I.;Lee, J.S.;Lee, J.H.;Sohn, S.H.;Lee, C.Y.;Moon, Y.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제20권4호
    • /
    • pp.487-495
    • /
    • 2007
  • The objectives of the present study were to initiate cloning of Korean native goat by somatic cell nuclear transfer (NT) and to examine whether unovulated (follicular) oocytes can support the same developmental ability of NT embryos as ovulated (oviductal) oocytes after hCG injection in stimulated cycles of the goat. The in vivo-matured and immature oocytes were collected from the oviducts and follicles of superovulated does, respectively, and the immature oocytes were maturated in vitro. Ear skin fibroblasts derived from a 3-yr-old female Korean native goat were used as the donors of nuclei or karyoplasts. Following fusion, activation and in vitro culture to a 2- to 4-cell stage, 49 in vitro-derived and 105 in vivo-derived embryos were transferred to 6 and 17 recipient does, respectively. One doe and three does of the respective groups were identified as pregnant by ultrasonography on day 30 after embryo transfer. However, only one doe, which had received in vivo-derived embryos, delivered a normal female kid of 1.9 kg on d 149. The cloned kid gained more weight than her age-matched females as much as 87% during the first 4 mo after birth (17.7 vs. $9.4{\pm}0.8$ kg) and reached puberty at 6-mo age a few months earlier than normal female does. The telomere length of the kid, which was similar to that of the donor fibroblast at 2-mo age, decreased 8% between 2- and 7-mo ages. Moreover, at 7-mo age, she had 21% shorter telomere than her age-matched goats. To our knowledge, this is the first case in which a cloned animal born with a normal weight exhibited accelerated growth and development. The unusually rapid growth and development of the cloned goat may have resulted from SCNT-associated epigenetic reprogramming involving telomere shortening.

Factors Affecting Superovulation and Embryo Transfer in Boer Goats

  • Chang, Zhongle;Fan, Xinzhong;Luo, Mingjiu;Wu, Zhanyuan;Tan, Jinghe
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제19권3호
    • /
    • pp.341-346
    • /
    • 2006
  • Despite many studies, results of superovulation protocols are not consistent in farm animals. In this study, 151 Boer goats were superovulated to examine the factors affecting superovulation and embryo transfer (MOET). An optimal regime for superovulation treatment was identified as a 4-day treatment with decreasing dosages of 6-7 mg Chinese FSH or 240 mg Canadian FSH. The 4-day treatment with decreasing dosages of 6-7 mg Chinese FSH was, therefore, adopted to study effects of the age of does, season and repeated treatments on superovulation and embryo transfer. The best season for superovulation and embryo transfer and pregnancy was autumn, and the best age range was 12-35 months old. Within animals there were no significant differences in the number of ovulations and the rate of transferable embryos between the first and the second superovulation. However, these parameters declined significantly for the third superovulation. No marked effects of the number of ovulations on the proportion of transferable embryos were noted. The parturition rate of the recipients receiving single embryos was not different significantly from those receiving two embryos, and the kidding rate calculated from embryos transferred did not differ significantly between recipients receiving one and two embryos.