• Title/Summary/Keyword: Go-back-N ARQ Protocol

Search Result 5, Processing Time 0.019 seconds

A Study on the Performance of Energy-efficient System with Go-back-N ARQ Protocol in Wireless Home Network Environment (무선 홈 네트워크 환경에서 Go-back-N ARQ 프로토콜을 적용한 에너지 효율적인 시스템의 성능에 대한 연구)

  • Roh, Jae-Sung
    • Journal of Digital Contents Society
    • /
    • v.9 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • In traditional wireless communication systems the main power consumption is due to the actual transmissions power. Therefore, energy-constrained wireless networks have gained considerable research attention in recent years. Multiple-input-multiple-output (MIMO) structure, or multiple antenna communication is one of the techniques that has gain considerable importance in wireless systems and networks. In this paper, BER and throughput performance of MISO system with Go-back-N ARQ(Automatic Repeat Request) technique in wireless networks are analyzed and the energy consumption of MISO-based wireless networks is compared with conventional SISO-based wireless networks. Obtained results show the applicability of MISO system with Go-back-N ARQ technique in wireless networks with smart system design.

  • PDF

Partial Go back N Scheme for Occupancy Control of Reordering Buffer in 3GPP ARQ (3GPP ARQ에서 재정렬 버퍼의 점유량 조절을 위한 부분 Go back N 방식)

  • Shin, Woo-Cheol;Park, Jin-Kyung;Ha, Jun;Choi, Cheon-Won
    • Proceedings of the IEEK Conference
    • /
    • 2003.11c
    • /
    • pp.302-305
    • /
    • 2003
  • 3GPP RLC protocol specification adopted an error control scheme based on selective repeat ARQ. In the 3GPP ARQ, distinctive windows are provided at transmitting and receiving stations so that those stations are prohibited to send or receive data PDU's out of window. An increase in window size enhances delay performance. Such an increase, however, raises the occupancy at re-ordering buffer, which results in a long re-ordering time. Aiming at suppressing the occupancy at re-ordering buffer, we propose partial go back N scheme in this paper In the partial go back N scheme, the receiving station regards all data PDU's between the first (lowest sequence numbered) error-detected PDU and last (highest sequence numbered) error-detected PDU. By the employment of the partial go back N scheme, the occupancy at the re-ordering buffer is apparently reduced, while the delay and throughput performance may be degraded due to the remaining properties of go back N. We thus consider peak occupancy of re-ordering buffer, mean sojourn time at re-ordering buffer, mean delay time, and maximum throughput as measures to evaluate tile proposed scheme and investigate such performance by using a simulation method. From numerical examples, we observe a trade-off among performance measures and conclude that the partial go back N scheme is able to effectively reduce the occupancy of re-ordering buffer.

  • PDF

Occupancy Control Scheme for Reordering Buffer at 3GPP ARQ (3GPP ARQ를 위한 재정렬 버퍼의 점유량 조절 방식)

  • Shin, Woo-Cheol;Park, Jin-Kyung;Ha, Jun;Choi, Cheon-Won
    • Proceedings of the IEEK Conference
    • /
    • 2003.07a
    • /
    • pp.65-68
    • /
    • 2003
  • 3GPP's RLC protocol specification adopted an error control scheme based on selective repeat ARQ. In 3GPP ARQ, distinctive windows are provide at transmitting and receiving stations so that those stations are prohibited to send or receive data PDU's out of window. An increase in window size enhances delay performance. Such an increase, however, raises the occupancy at reordering buffer, which results in a long reordering time. Aiming at suppressing the occupancy at reordering buffer, we propose a occupancy control scheme in this paper. In this scheme, a threshold is created in the receiving station's window and a data PDU out of the threshold (but within the window) is treated according to go back N ARQ. By the employment of the occupancy control scheme, the occupancy at the reordering buffer is apparently reduced, while the delay performance may be degraded due to the properties of go back N ARQ. We, thus, investigate the peak occupancy and mean delay performance by a simulation method. From numerical examples, we observe a trade-off in both performance measures and conclude that the peak occupancy is effectively reduced by setting a proper threshold under a constraint on mean delay performance.

  • PDF

Flow Control Throughput Performance Improvement of Adaptive Packet Length Allocation Scheme in Wireless Data Communication System (무선 데이타 통신 시스템에서 적응패킷길이할당방식을 이용한 흐름제어 기능 개선)

  • 정기호;박종영;금홍식;이상곤;류흥균
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.2
    • /
    • pp.11-18
    • /
    • 1995
  • Error detection in ARQ(Automatic Repeat Request) protocols is very important in wireless data communication systems. The throughput efficiency of ARQ protocols can be improved by dynamically adapting the protocol packet length so that it approaches the optimum value for throuhput efficiency. In this paper, a simple and novel adaptive packet length allocation method is proposed which transmits the packets with variable length by dyanmically estimating the channel codition. The simulation results show that the average of throughput is improved by 315.4% in the stop-and-wait protocol, 41.4% in the go-back-N protocol and 155.9% in the selective repeat protocol respectively. And the throughput performances of adaptive packet length allocation method approximately approach the theoritically optimal throughput performances.

  • PDF

Performance Analysis of Flow and Error Control Procedures in a Packet-Switching Network (패킷 교환망에서 흐름과 에러 제어과정에 관한 성능분석)

  • Lie, Chang-Hoon;Hong, Jeong-Wan;Hong, Jung-Sik;Lee, Kang-Won
    • IE interfaces
    • /
    • v.4 no.1
    • /
    • pp.63-69
    • /
    • 1991
  • In this paper, the Go-Back-N ARQ protocol with decoding in communication network is considered. The time delay and throughput are respectively analyzed as a function of window size and decoding time out. Packets arrive continuously at the decoder, and are stored in a buffer if the decoder is busy upon its arrival. The decoder devotes no more than a time-out period of predetermined length to the decoding of any single packet. If packet decoding is completed within that period, the packet leaves the system. Otherwise, it is retransimitted and its decoding starts anew. The time delay and throughput are obtained using recursive formula and difference equation. An appropriate time out and window size that satisfies the grade of service can be determined.

  • PDF