• Title/Summary/Keyword: GnRH (gonadotropin-releasing hormone)

Search Result 130, Processing Time 0.17 seconds

Evolutionary Viewpoint on GnRH (gonadotropin-releasing hormone) in Chordata - Amino Acid and Nucleic Acid Sequences

  • Choi, Donchan
    • Development and Reproduction
    • /
    • v.22 no.2
    • /
    • pp.119-132
    • /
    • 2018
  • GnRH (gonadotropin-releasing hormone) is a supreme hormone regulating reproductive activity in most animals. The sequences of amino acid and nucleic acid of GnRH reported up to now are examined from the evolutionary framework of Chordata. All identified GnRH are classified into GnRH1, GnRH2, or GnRH3. In all three forms of GnRH both N-terminal and C-terminal are conserved, which allows for effective binding to their receptors. The three amino acids in the middle of GnRH1 sequence have altered diversely from the primitive Chordata, which is indicative of the adaptation process to the ambient environment. GnRH2 and GnRH3 sequences are well conserved. There are more diverse modifications in the nucleic acids than in amino acid sequence of GnRH1. These variations can result from meiosis, mutation, or epigenetics and indicate that GnRH is the product of natural selection.

The Control Mechanism of Gonadotropin-Releasing Hormone and Dopamine on Gonadotropin Release from Cultured Pituitary Cells of Rainbow Trout Oncorhynchus mykiss at Different Reproductive Stages

  • Kim, Dae-Jung;Suzuki, Yuzuru;Aida, Katsumi
    • Fisheries and Aquatic Sciences
    • /
    • v.14 no.4
    • /
    • pp.379-388
    • /
    • 2011
  • The mechanism by which gonadotropin-releasing hormone (GnRH) and dopamine (DA) control gonadotropin (GTH) release was studied in male and female rainbow trout using cultured pituitary cells obtained at different reproductive stages. The mechanisms of follicle-stimulating hormone (FSH) release by GnRH and DA could not be determined yet. However, basal and salmon-type GnRH (sGnRH)- or chicken-II-type GnRH (cGnRH-II)- induced luteinizing hormone (LH) release increased with gonadal maturation in both sexes. LH release activity was higher after sGnRH stimulation than cGnRH-II stimulation at maturing stages in both sexes. The GnRH antagonist ([Ac-3, 4-dehydro-$Pro^1$, D-p-F-$Phe^2$, D-$Trp^{3,6}$] GnRH) suppressed LH release by sGnRH stimulation in a dose-dependent manner, although the effect was weak in maturing fish. The role of DA as a GTH-release inhibitory factor differs during the reproductive cycle: the inhibition of sGnRH-stimulated LH release by DA was stronger in immature fish than in maturing, ovulating, or spermiated fish. DA did not completely inhibit sGnRH-stimulated LH release, and DA alone did not alter basal LH release. Relatively high doses ($10^{-6}$ or $10^{-5}M$) of domperidone (DOM, a DA D2 antagonist) increased LH release, which did not change with reproductive stage in either sex. The potency of DOM to enhance sGnRH-stimulated LH release was higher in maturing and ovulated fish than in immature fish. These data suggest that LH release from the pituitary gland is controlled by dual neuroendocrine mechanisms by GnRH and DA in rainbow trout, as has been reported in other teleosts. The mechanism of control of FSH release, however, remains unknown.

Expression and Regulation of Gonadotropin-Releasing Hormone(GnRH) and Its Receptor mRNA Transcripts During the Mouse Ovarian Development

  • Shim, Chanseob;Khang, Inkoo;Lee, Kyung-Ah;Kim, Kyungjin
    • Animal cells and systems
    • /
    • v.5 no.3
    • /
    • pp.217-224
    • /
    • 2001
  • The present study examines the expression and regulation of gonadotropin-releasing hormone (GnRH) and its receptor (GnRH-R) mRNA levels during mouse ovarian development. A fully processed, mature GnRH mRNA together with intron-containing primary transcripts was expressed in the immature mouse ovary as determined by Northern blot analysis and reverse transcription-polymerase chain reaction (RT-PCR). The size of ovarian GnRH mRNA was similar to that of hypothalamus, but its amount was much lower than that in the hypothalamus. Quantitative RT-PCR procedure also revealed the expression of GnRH-R mRNA in the ovary, but the estimated amount was a thousand-fold lower than that in the pituitary gland. We also examined the regulation of ovarian GnRH and GnRH-R mRNA levels during the follicular development induced by pregnant mare's serum gonadotropin (PMSG) and/or human chorionic gonadotropin (hCG). Ovarian luteinizing hormone receptor (LH-R) mRNA was abruptly increased st 48 h after the PMSG administration and rapidly decreased to the basal level thereafter. Ovarian GnRH mRNA level was slightly decreased at 48 h after the PMSG administration, and then returned to the basal value. GnRH-R mRNA level began to increase at 24 h after the PMSG treatment, decreased below the uninduced basal level at 48 h, and gradually increased thereafter. HCG administration did not alter ovarian GnRH mRNA level, while it blocked the PMSG-induced increase in GnRH mRNA level. Taken together, the present study demonstrates that the expression of GnRH and GnRH-R mRNA are regulated by gonadotropin during follicular development, suggesting possible intragonadal paracrine roles of GnRH and GnRH-R in the mouse ovarian development.

  • PDF

Molecular Co-evolution of Gonadotropin-releasing Hormones and Their Receptors

  • Seong, Jae-Young;Kwon, Hyuk-Bang
    • Animal cells and systems
    • /
    • v.11 no.2
    • /
    • pp.93-98
    • /
    • 2007
  • Gonadotropin-releasing hormone (GnRH), synthesized in the hypothalamus, plays a pivotal role in the regulation of vertebrate reproduction. Since molecular isoforms of GnRH and their receptors (GnRHR) have been isolated in a broad range of vertebrate species, GnRH and GnRHR provide an excellent model for understanding the molecular co-evolution of a peptide ligand-receptor pair. Vertebrate species possess multiple forms of GnRH, which have been created through evolutionary mechanisms such as gene/chromosome duplication, gene deletion and modification. Similar to GnRHs, GnRH receptors (GnRHR) have also been diversified evolutionarily. Comparative ligand-receptor interaction studies for non-mammalian and mammalian GnRHRs combined with mutational mapping studies of GnRHRs have aided the identification of domains or motifs responsible for ligand binding and receptor activation. Here we discuss the molecular basis of GnRH-GnRHR co-evolution, particularly the structure-function relationship regarding ligand selectivity and signal transduction of mammalian and non-mammalian GnRHRs.

Involvement of Amino Acids Flanking Glu7.32 of the Gonadotropin-releasing Hormone Receptor in the Selectivity of Antagonists

  • Wang, Chengbing;Oh, Da Young;Maiti, Kaushik;Kwon, Hyuk Bang;Cheon, Jun;Hwang, Jong-Ik;Seong, Jae Young
    • Molecules and Cells
    • /
    • v.25 no.1
    • /
    • pp.91-98
    • /
    • 2008
  • The Glu/$Asp^{7.32}$ residue in extracellular loop 3 of the mammalian type-I gonadotropin-releasing hormone receptor (GnRHR) interacts with $Arg^8$ of GnRH-I, conferring preferential ligand selectivity for GnRH-I over GnRH-II. Previously, we demonstrated that the residues (Ser and Pro) flanking Glu/$Asp^{7.32}$ also play a role in the differential agonist selectivity of mammalian and non-mammalian GnRHRs. In this study, we examined the differential antagonist selectivity of wild type and mutant GnRHRs in which the Ser and Pro residues were changed. Cetrorelix, a GnRH-I antagonist, and Trptorelix-2, a GnRH-II antagonist, exhibited high selectivity for mammalian type-I and non-mammalian GnRHRs, respectively. The inhibitory activities of the antagonists were dependent on agonist concentration and subtype. Rat GnRHR in which the Ser-Glu-Pro (SEP) motif was changed to Pro-Glu-Val (PEV) or Pro-Glu-Ser (PES) had increased sensitivity to Trptorelix-2 but decreased sensitivity to Cetrorelix. Mutant bullfrog GnRHR-1 with the SEP motif had the reverse antagonist selectivity, with reduced sensitivity to Trptorelix-2 but increased sensitivity to Cetrorelix. These findings indicate that the residues flanking $Glu^{7.32}$ are important for antagonist as well as agonist selectivity.

Effects of human growth hormone on gonadotropin-releasing hormone neurons in mice

  • Bhattarai, Janardhan P.;Kim, Shin-Hye;Han, Seong-Kyu;Park, Mi-Jung
    • Clinical and Experimental Pediatrics
    • /
    • v.53 no.9
    • /
    • pp.845-851
    • /
    • 2010
  • Purpose: Recombinant human growth hormone (rhGH) has been widely used to treat short stature. However, there are some concerns that growth hormone treatment may induce skeletal maturation and early onset of puberty. In this study, we investigated whether rhGH can directly affect the neuronal activities of of gonadotropin-releasing hormone (GnRH). Methods: We performed brain slice gramicidin-perforated current clamp recording to examine the direct membrane effects of rhGH on GnRH neurons, and a whole-cell voltage-clamp recording to examine the effects of rhGH on spontaneous postsynaptic events and holding currents in immature (postnatal days 13-21) and adult (postnatal days 42-73) mice. Results: In immature mice, all 5 GnRH neurons recorded in gramicidin-perforated current clamp mode showed no membrane potential changes on application of rhGH (0.4, $1{\mu}g/mL$). In adult GnRH neurons, 7 (78%) of 9 neurons tested showed no response to rhGH ($0.2-1{\mu}g/mL$) and 2 neurons showed slight depolarization. In 9 (90%) of 10 immature neurons tested, rhGH did not induce any membrane holding current changes or spontaneous postsynaptic currents (sPSCs). There was no change in sPSCs and holding current in 4 of 5 adult GnRH neurons. Conclusion: These findings demonstrate that rhGH does not directly affect the GnRH neuronal activities in our experimental model.

Effects of Gonadotropin-Releasing Hormone on Reproductive Performance of Early Postpartum Dairy Cows and Cystic Cows (Gonadotropin-Releasing Hormone의 투여(投與)가 산욕기(産褥期)의 유우(乳牛)와 난소낭종유우(卵巢囊腫乳牛)의 번식효율(繁殖效率)에 미치는 영향(影響))

  • Hwang, Woo Suk
    • Korean Journal of Veterinary Research
    • /
    • v.21 no.1
    • /
    • pp.59-64
    • /
    • 1981
  • Holstein-Friesian cows(n=284) were given $100{\mu}g$ of gonadotropin-releasing hormone(GnRH) or saline solution by intramuscular injection at 10 to 22 days after parturition, and were investigated their reproductive performance and frequency of ovarian cysts. Among them 28 cystic cows were injected with $150{\mu}g$ of GnRH intramuscularly and examined the recovery rate. The results obtained in this study were summarized as follows: 1. The interval from calving to 1st ovulation was reduced from 28.2 days in controls to 16.5 days for cows given GnRH (p<0.01). 2. The intervals from calving to 1st estrus and from calving to conception were extended significantly in control group (p<0.05). 3. Inseminations per conception and conception rate at 1st insemination did not reveal difference between two groups. 4. Frequency of ovarian cysts was reduced from 14.0% in control to 4.20% for cows given GnRH (p<0.05). 5. Of the 28 cystic cows receiving $150{\mu}g$ of GnRH, 23(82.1%) responded to 1st treatment and returned to estrus $24.2{\pm}4.3$ days after treatment. 6. These data provide evidence for reduction in infertility and reproductive disorders in early postpartum dairy cows given GnRH as a prophylactic.

  • PDF

Induced Ovulation by using Human Chorionic Gonadotropin and Gonadotropin-Releasing Hormone Analogue plus Pimozide in Yellow Puffer, Takifugu obscurus (인간의 태반성 성선자극호르몬 또는 성선자극호르몬-방출호르몬 유도체와 Pimozide에 의한 황복의 배란유도)

  • Jang, Seon-Il
    • Journal of Aquaculture
    • /
    • v.9 no.1
    • /
    • pp.3-10
    • /
    • 1996
  • Ovulation of maturing female yellow puffer, Takifugu obscrus, was induced by using single injection of human chorionic gonadotropin (HCG) or gonadotropin releasing hormone-analogue (GnRH-A) $des-Gly^{10}[D-Ala^6]$ GnRH-ethylamide plus pimozide. The response was evaluated using the fertilization and embryo-formation rate after insemination and the gonadotropin (GTH) level in blood plasma using radioimmunoassay. In the fertilization and embryo-formation, maximal effects were recorded by using 1,000 IU/kg HCG or $10\;{mu}g/kg$ GnRH-A plus 5 mg/kr pimozide. Pimozide (1, 5 mg/kg) or GnRH-A treatment alone was not effective in elevation of GTH level, however combinations of these treatments were particularly effective. Injection of dopamine blocked the rapid elevation of plasma GTH levels of blood. These data suggest that yellow puffer secrete GnRH and gonadotropin-releasing-inhibiting factor during the spawning or the other period.

  • PDF

Effects of Gonadotropin-Releasing Hormone on in vitro Gonadotropin Release in Testosterone-Treated Immature Rainbow Trout

  • Kim, Dae-Jung;Kim, Yi-Cheong;Aida, Katsumi
    • Animal cells and systems
    • /
    • v.13 no.4
    • /
    • pp.429-437
    • /
    • 2009
  • The control mechanism of gonadotropin-releasing hormone (GnRH) on gonadotropin (GTH) release was studied using cultured pituitary cell or cultured whole pituitary obtained from Testosterone (T) treated and control immature rainbow trout. The release of FSH was not changed by salmon type GnRH (sGnRH), chiken-II type (cGnRH-II), GnRH analogue ([des-$Gly^{10}D-Ala^6$] GnRH ethylamide) and GnRH antagonist ([Ac-3, 4-dehydro-$Pro^1$, D-p-F-$Phe^2$, D-$Trp^{3,6}$] GnRH) in cultured pituitary cells of T-treated and control fish. Indeed, FSH release was not also altered by sGnRH in cultured whole pituitary. All tested drugs had no effect on the release of LH in both culture systems of control fish. The levels of LH, in contrast, such as the pituitary content, basal release and responsiveness to GnRH were increased by T administration in both culture systems. In addition, the release of LH in response to sGnRH or cGnRH-II induced in a dose-dependent manner from cultured pituitary cells of T-treated fish, but which is not significantly different between in both GnRH at the concentration examined. Indeed, LH release was also increased by sGnRH in cultured whole pituitary of T-treated fish. GnRH antagonist suppressed the release of LH by sGnRH ($10^{-8}\;M$) and GnRH analogue ($10^{-8}\;M$) stimulation in a dose-dependent manner from cultured pituitary cells of T-treated fish, and which were totally inhibited by $10^{-7}\;M$ GnRH antagonist. These results indicate that the sensitivity of pituitary cells to GnRH is elevated probably through the T treatment, and that GnRH is involved in the regulation of LH release. GnRH-stimulated LH release is inhibited by GnRH antagonist in a dose-dependent manner. The effects of gonadal steroids on FSH levels are less clear.

Effect of Gonadotropin-releasing Hormone Administration in Repeat-breeder Hanwoo (저수태 한우에 대한 성선자극 호르몬 방출호르몬 투여 효과)

  • 임석기;우재석;윤상보;전기준
    • Journal of Embryo Transfer
    • /
    • v.12 no.1
    • /
    • pp.117-122
    • /
    • 1997
  • The objective of this study was to enhance the pregnancy rate of repeat-breeder Hanwoo with gonadotropin-releasing hormone(Gn-RH) at the time, dose and site of administration.The results obtained were summaried as fallows:1.Ovulation time and pregnancy rate following GnRH administration time was 46.0, 27.4, 42.0 and 43.2hr and 33.3, 57.1, 37.5 and 40.0% at non-treatment, estus, 1st A' and 2nd Al treatment, respectively.2. Ovulation in repeat-breeder was induced 100% within 24hr with GnRH administration at the time of estrus.3. Ovulation time and pregnancy rate following GnRH adminstration dose and site was 25.2, 32.6, 17.6 and 27.6hr, and 28.6, 42.9, 75.0 and 66.7% at 50$\mu$g+IU, 50$\mu$g+IM, 100$\mu$g+IU and 100$\mu$g+IM treatments, respectively. It is concluded that GnRH administration for repeat-breeder was enhanced the pregnancy rate when treated with 100$\mu$g intrauterine at the time of estrus.

  • PDF