• 제목/요약/키워드: Glycosylated

검색결과 223건 처리시간 0.033초

Expression of Porcine Acid-labile Subunit (pALS) of the 150-kilodalton Ternary Insulin-like Growth Factor Complex and Initial Characterization of Recombinant pALS Protein

  • Lee, Dong-Hee;Chun, Choa;Kim, Sang-Hoon;Lee, C.-Young
    • BMB Reports
    • /
    • 제38권2호
    • /
    • pp.225-231
    • /
    • 2005
  • Acid-labile subunit (ALS) is a component of the 150-kDa insulin-like growth factor-binding protein-3 (IGFBP-3) complex, which, by sequestering the majority of IGFs-I and -II and thereby prolonging the half-life of them in plasma, serves as a circulating reservoir of IGFs in mammalian species. A pGEX-2T plasmid and a baculovirus expression constructs harboring a coding sequence for glutathione-S transferase (GST)-porcine ALS (pALS) fusion protein were expressed in BL21(DE3) E. coli and Sf9 insect cells, respectively. The expressed protein was purified by glutathione or Ni-NTN affinity chromatography, followed by cleavage of the fusion protein using Factor Xa. In addition, pALS and hIGFBP-3 were also produced in small amounts in the Xenopus oocyte expression system which does not require any purification procedure. A 65-kDa pALS polypeptide was obtained following the prokaryotic expression and the enzymatic digestion, but biochemical characterization of this polypeptide was precluded because of an extremely low expression efficiency. The baculovirus-as well as Xenopus-expressed pALS exhibited the expected molecular mass of 85 kDa which was reduced into 75 and 65 kDa following deglycosylation of Asn-linked carbohydrates by Endo-F glycosidase, indicating that the expressed pALS was properly glycosylated. Moreover, irrespective of the source of pALS, the recombinant pALS and hIGFBP-3 formed a 130-kDa binary complex which could be immunoprecipitated by anti-hIGFBP-3 antibodies. Collectively, results indicate that an authentic pALS protein can be produced by the current expression systems.

탄력밴드 저항운동이 당뇨 노인의 신체 기능과 당화혈색소에 미치는 영향 (Effects of Elastic Band Resistance Exercise Program on Body Functions and HbA1c of the Elderly with Type 2 Diabetes)

  • 박상영;김중선;남석현
    • The Journal of Korean Physical Therapy
    • /
    • 제24권5호
    • /
    • pp.362-369
    • /
    • 2012
  • Purpose: This study examined the effects of an elastic band resistance exercise program on the body functions and Glycosylated hemoglobin (HbA1c) of elderly people with type 2 diabetes. Methods: Twenty-seven elderly patients with type 2 diabetes were enrolled in this study (exercise group 14, control group 13). The subjects in the exercise group participated in the program for 60 minutes a day, three times a week, for 12 weeks. All the subject's body functions, HbA1c were measured to compare the following: before the intervention, at the completion of the 12 weeks intervention, and eight weeks after the intervention. Results: Compared to the control group, the exercise group showed significant improvements in the 12 week and follow-up measurement after the intervention in body function, such as the strength of the upper and lower limbs, agility and limit of stability. The body functions of the exercise group improved as the period of intervention progressed. On the other hand, the HbA1c level at each follow-up measurement was similar in the two groups. Conclusion: The 12 week elastic band exercise program is recommended as an effective intervention for improving the body functions of elderly people with type 2 diabetes. Nevertheless, a combined intervention of steady exercise, diet therapy and drug therapy will be needed for further active prevention and management of type 2 diabetes.

Silymarin, a flavonoid antioxidant, protects streptozotocin-induced lipid peroxidation and β-Cell damage in rat pancreas

  • Sharma, Manju;Anwer, Tarique;Pillai, K K;Haque, Syed Ehtaishamul;Najmi, A K;Sultana, Yasmin
    • Advances in Traditional Medicine
    • /
    • 제8권2호
    • /
    • pp.146-153
    • /
    • 2008
  • The present study is aimed at finding the influence of silymarin (a flavonoid) (25 mg/kg & 50 mg/kg) in streptozotocin (STZ)-induced diabetic rats. Type 2 diabetes was induced by single intraperitoneal injection of STZ (100 mg/kg) to 3 days old rat pups. Silymarin was administered for 15 days after the animals were confirmed diabetic (75 days after STZ injection). Blood glucose, glycosylated hemoglobin ($HbA_{1c}$), lipid peroxides (LPO) levels and reduced glutathione (GSH) contents in pancreas and liver were estimated following the established procedures. Biochemical observations were further substantiated with histological examination of pancreas. Blood glucose and $HbA_{1c}$ levels, which were elevated by STZ, were lowered to physiological levels by the administration of silymarin. The levels of LPO were significantly increased in STZ-induced diabetic rats. Silymarin reduced the LPO levels in both pancreas and liver. GSH contents which were reduced significantly in pancreas and liver of STZ-induced diabetic rats were brought back to near normal levels by silymarin treatment. Multifocal necrotic and degenerative changes of pancreas in STZ-diabetic rats were minimized to near normal morphology by administration of silymarin as evident by histopathological examination. Silymarin showed a dose dependent protective effect on STZ-induced $\beta$-cell damage. It could be attributed to the antioxidative and free radicals scavenging properties of the flavonoid. Thus, it may be considered as a natural antioxidant with potential therapeutic application in the treatment of type 2 diabetes.

Isolation and Identification of Bioactive Compounds from the Tuber of Brassica oleracea var. gongylodes

  • Prajapati, Ritu;Seong, Su Hui;Kim, Hyeung Rak;Jung, Hyun Ah;Choi, Jae Sue
    • Natural Product Sciences
    • /
    • 제26권3호
    • /
    • pp.214-220
    • /
    • 2020
  • Brassica oleracea var. gongylodes (red kohlrabi) is a biennial herbaceous vegetable whose edible bulbotuber-like stem and leaves are consumed globally. Sliced red kohlrabi tubers were extracted using methanol and the concentrated extract was partitioned successively with dichloromethane (CH2Cl2), ethyl acetate (EtOAc), n-butanol (n-BuOH) and water (H2O). Repeated column chromatography of EtOAc fraction through silica, sephadex LH-20 and RP-18 gel led to isolation of eleven compounds of which compound 1 was a new glycosylated indole alkaloid derivative, 1-methoxyindole 3-carboxylic acid 6-O-β-D-glucopyranoside. Others were known compounds namely, β-sitosterol glucoside (4), 5-hydroxymethyl-2-furaldehyde (5), methyl-1-thio-β-D-glucopyranosyl disulfide (6), 5-hydroxy-2-pyridinemethanol (7), (3S,4R)-2-deoxyribonolactone (8), n-butyl-β-D-fructopyranoside (9), uridine (10) and three fructose derivatives, D-tagatose (11), β-D-fructofuranose (12) and β-D-fructopyranose (13). Similarly, isolation from CH2Cl2 fraction gave two known indole alkaloids, indole 3-acetonitrile (2) and N-methoxyindole 3-acetonitrile (3). The structure elucidation and identification of these compounds were conducted with the help of 13C and 1H NMR, HMBC, HMQC, EIMS, HR-ESIMS and IR spectroscopic data, and TLC plate spots visualization. Compounds 2, 3, 4, 5, 6, 7, 8 and 9 are noted to occur in kohlrabi for the first time. Different bioactivities of these isolated compounds have been reported in literature.

Molecular Cloning and Characterization of a Muscle-Specific Lipase from the Bumblebee Bombus ignitus

  • Hu, Zhigang;Wang, Dong;Lu, Wei;Cui, Zheng;Jia, Jing-Ming;Yoon, Hyung-Joo;Sohn, Hung-Dae;Kim, Doh-Hoon;Jin, Byung-Rae
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제17권1호
    • /
    • pp.143-151
    • /
    • 2008
  • A muscle-specific lipase gene of the bumblebee Bombus ignitus was cloned and characterized. This gene, which we named Bi-Lipase, consists of seven exons encoding 317 amino acid residues. Bi-Lipase possesses all the features of lipases, including GXSXG consensus motif and Ser-Asp-His catalytic triad. Expressed as a 37-kDa polypeptide in baculovirus-infected insect Sf9 cells, recombinant Bi-Lipase showed an optimal pH of 9.0 and exhibited its highest catalytic activity at $40^{\circ}C$. Furthermore, through the addition of tunicamycin to the recombinant virus-infected Sf9 cells, recombinant Bi-Lipase was found to be N-glycosylated. Northern and western blot analyses indicated that Bi-Lipase was expressed in the wing, thorax, and leg muscles. These results show that Bi-Lipase is a muscle-specific lipase, suggesting a possible role of Bi-Lipase in the utilization of lipids for muscular activity in B. ignitus.

Saccharomyces cerevisiae에서 발현된 Pseudomonas aurantiaca Levansucrase의 분비국재성 (Secretion and Localization of Pseudomonas auratiaca Levansucrase Expressed in Saccharomyces cerevisiae)

  • 임채권;김광현;김철호;이상기;남수완
    • 한국미생물·생명공학회지
    • /
    • 제32권3호
    • /
    • pp.206-211
    • /
    • 2004
  • Pseudomonas aurantiaca 유래 levansucrase 유전자(lscA)를 GAL1 promoter 하류에 연결시킨 pYES-lscA와 CAL10 promoter와 Kluyveromyces marxianus exoinulinase의 분비 신호서열(INU1 ss)하류에 연결시킨 pYInu-lscA를 각각 구축하였다. 이들 plasmid를 invertase 결손 변이주(suc2-$\Delta$9)인 S. cerevisiae SEY2102에 형질전환시켜 고활성 형질전환주를 선발하였다. 효모 형질전환주를 galactose 함유 배지로 배양한 결과, pYES-lscA 함유 형질전환주인 경우 levansucrase의 총활성은 8.62 U/ml이고, pYInu-lscA 함유 형질전환주인 경우 5.43 U/ml에 도달하였다. 발현된 levansucrase의 약 80% 정도가 periplasmic space와 cytopla느에 존재하였고, INU1 ss에 의한 분비효율 증가는 관찰할 수 없었다. 또한, 효모에서 발현된 재조합 levansucrase는 과당쇄화된 형으로 생산되는 것으로 보여진다.

Effects of Changes in Glycosylation Sites on Secretion of Recombinant Human Erythropoietin in Cultured CHO Cells

  • Lee, H. G;Lee, P. Y.;Lee, Y. K.;Kim, S. J.;H. K. Chung;M. K. Seo;Park, J. K.;K. S. Min;W. K. Chang
    • 한국가축번식학회지
    • /
    • 제27권4호
    • /
    • pp.299-307
    • /
    • 2003
  • The effects of additions/deletions in glycosylated residues of recombinant human EPO (rhEPO) produced in CHO-K1 on their secretion were examined. hEPO cDNA was amplified from human liver mRNA and cloned into the pCR2.1 TOPO. Using overlapping-extension site-directed mutagenesis method, glycosylation sites at 24th, 38th, 83rd, and 126th were respectively or accumulatively removed by substituting its asparagine (or serine) with glutamine. To add novel glycosylation sites, 69 and 105th leucine was mutated to asparagine. Mutant and wild type rhEPO constructs were cloned into the pcDNA3 expression vector with CMV promoter and transfected into CHO cell line, CHO-K1, to produce mutant rhEPO mutant rhEPO proteins. Enzyme-linked immunosorbant assay (ELISA) and Western analysis with monoclonal anti-EPO antibody were performed using supernatants of the cultures showing transient and stable expressions respectively. Addition of novel glycosylation reduced rhEPO secretion dramatically while deletion mutants had little effect except some double deletion mutants ($\Delta$24/83 and $\Delta$38/83) and triple mutant ($\Delta$24/38/83). This fact suggests that not single but combination of changes in glycosyl groups affect secretion of rhEPO in cell culture, possibly via changes in their conformations.

Expression and Functional Characterization of Recombinant Human Erythropoietin (rhEPO) Produced in the Milk of Transgenic Mice

  • 권득남;박종이;이소영;황규찬;양민정;김진회
    • 한국동물번식학회:학술대회논문집
    • /
    • 한국동물번식학회 2003년도 학술발표대회 발표논문초록집
    • /
    • pp.17-17
    • /
    • 2003
  • The milk of transgenic animals may provide an attractive vehicle for large-scale production of hEPO. Since glycosylation is cell type specific, recombinant human EPO (rhEPO) produced in different host cells contain different patterns of oligosaccharides, which could affect the biological functions. However, there have been no reports on the characteristics of rhEPO derived from milk of transgenic animals. To address this objective, several transgenic mice by using pWAPhEPO and/or pBC1hEPO expression vector were produced. However, 2 lines of pWAPhEPO founder female mouse died during late gestational day (day 18) before offspring could be obtained. They showed a severe splenomegaly, Unlike those of pWAPhEPO, mammary gland epithelial cells from biopsies of lactating pBC1hEPO transgenic mice had marked immunoreactivity to EPO and any activity was not detected in other tissues. The expression level of rhEPO is about 0.7% of mammary gland cellular total soluble proteins and an amount of 300~500 mg/L rhEPO is secreted into milk. Furthermore, the pBC1hEPO transgenic mice transmitted this character to their progeny in mendelian manner. In order to determine the extent of glycosylation variation, N-linked oligosaccharide structures present in the milk-derived rhEPO were characterized. Most of milk-derived rhEPO is fully glycosylated. the biological activity of milk-derived rhEPO was comparable to that of purified CHO-derived rhEPO, and milk-derived rhEPO showed relatively stable after freezing and thawing. Taken together, the results illustrate the potential of transgenic animals in the large-scale production of biopharmaceuticals.

  • PDF

Sustainable Production of Dihydroxybenzene Glucosides Using Immobilized Amylosucrase from Deinococcus geothermalis

  • Lee, Hun Sang;Kim, Tae-Su;Parajuli, Prakash;Pandey, Ramesh Prasad;Sohng, Jae Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권9호
    • /
    • pp.1447-1456
    • /
    • 2018
  • The amylosucrase encoding gene from Deinococcus geothermalis DSM 11300 (DgAS) was codon-optimized and expressed in Escherichia coli. The enzyme was employed for biosynthesis of three different dihydroxybenzene glucosides using sucrose as the source of glucose moiety. The reaction parameters, including temperature, pH, and donor (sucrose) and acceptor substrate concentrations, were optimized to increase the production yield. This study demonstrates the highest ever reported molar yield of hydroquinone glucosides 325.6 mM (88.6 g/l), resorcinol glucosides 130.2 mM (35.4 g/l) and catechol glucosides 284.4 mM (77.4 g/l) when 400 mM hydroquinone, 200 mM resorcinol and 300 mM catechol, respectively, were used as an acceptor substrate. Furthermore, the use of commercially available amyloglucosidase at the end of the transglycosylation reaction minimized the gluco-oligosaccharides, thereby enhancing the target productivity of mono-glucosides. Moreover, the immobilized DgAS on Amicogen LKZ118 beads led to a 278.4 mM (75.8 g/l), 108.8 mM (29.6 g/l) and 211.2 mM (57.5 g/l) final concentration of mono-glycosylated product of hydroquinone, catechol and resorcinol at 35 cycles, respectively, when the same substrate concentration was used as mentioned above. The percent yield of the total glycosides of hydroquinone and catechol varied from 85% to 90% during 35 cycles of reactions in an immobilized system, however, in case of resorcinol the yield was in between 65% to 70%. The immobilized DgAS enhanced the efficiency of the glycosylation reaction and is therefore considered effective for industrial application.

THP-1 세포주에서 Leptin에 의한 케모카인 유전자 발현 (Effect of Leptin on the Expression of Chemokine Genes in THP-1 Cells)

  • 최진희;박호선;이태윤;김성광;김희선
    • Journal of Yeungnam Medical Science
    • /
    • 제20권2호
    • /
    • pp.129-141
    • /
    • 2003
  • Background: Leptin is a 16-KDa non-glycosylated peptide hormone synthesized almost exclusively by adipocytes. The well-known function of leptin is regulation of food intake and energy expenditure. Leptin also plays a regulatory role in immune and inflammatory process including cytokine production. The purpose of this study was to investigate the effect of leptin on the expression of several chemokine genes(RANTES, IL-8, MCP-1, IP-10, Mig, MIP-$1{\alpha}$, MIP-$1{\beta}$, and GRO-${\alpha}$) in THP-1 cells. Materials and Methods: Total RNA of THP-1 cells were prepared by Trizol method, and then stimulated with the leptin(250 ng/$m{\ell}$) or LPS(100 ng/$m{\ell}$). We examined the expression patterns of various chemokine mRNAs in THP-1 cell lines by RT-PCR and Northern blot. Results: Leptin did not induce the expression of chemokine mRNAs in THP-1 cells. The expression patterns of RANTES, IL-8, MCP-1, IP-10, and Mig mRNAs in THP-1 cells stimulated with leptin and LPS simultaneously was almost same to the patterns of LPS alone-induced chemokine mRNAs. RANTES mRNA expression was independent on the concentrations of leptin. Although leptin did not have strong effect on the expression of RANTES, IL-8, MCP-1, IP-10, Mig, MIP-$1{\alpha}$, MIP-$1{\beta}$, and GRO-${\alpha}$ mRNAs in THP-1 cells, leptin could induce the expression of long isoform of leptin receptor(OB-RL) mRNA, and its expression was elevated in simultaneous stimulation of leptin and LPS. Conclusion: These data suggest that leptin is able to induce OB-RL in THP-1 cells, however, leptin has little effect on the expression of pro-inflammatory chemokine genes.

  • PDF