• Title/Summary/Keyword: Glycidyl Methacrylate

Search Result 95, Processing Time 0.023 seconds

Verification of Core/Shell Structure of Poly(glycidyl methacrylate-co-divinyl benzene) Microspheres

  • Jin, Jeong-Min;Choi, Jin-Young;Lee, Kang-Seok;Choe, Soon-Ja
    • Macromolecular Research
    • /
    • v.17 no.5
    • /
    • pp.339-345
    • /
    • 2009
  • The core/shell type structure of the highly crosslinked poly(glycidylmetharylate-co-divinylbenzene) microspheres prepared in the precipitation polymerization in acetonitrile was thoroughly verified by means of swelling, $^1H$ NMR, XPS, TEM and TGA measurements. In the XPS measurement, the higher the GMA content, the higher the oxygen content was observed, implying that the higher content of GMA is observed in the particle surface. The further verification of the core/shell structure of the poly(GMA-co-DVB) particles was carried out using $^1H$ NMR and TEM techniques, resulting in the poly(GMA-co-DVB) particles with the GMA rich-phase and DVB rich-phase. In overall, the poly(GMA-co-DVB) microspheres consist of a highly crosslinked DVB rich-phase in the core and slightly or non-crosslinked GMA rich-phase in the shell part due to the different reaction ratios between two monomers and self-crosslinking density of DVB.

Thermal Properties of Cured Epoxy Resin Filled with Rubber Complex-Treated Silica (고무상 복합물로 표면처리 한 실리카를 충전한 에폭시 수지 경화물의 열적 특성)

  • Choi, Sang-Goo;Suh, Won-Dong
    • Elastomers and Composites
    • /
    • v.32 no.1
    • /
    • pp.11-19
    • /
    • 1997
  • [ ${\gamm}-Glycidoxy$ ] propyl trimethoxy silane, CTBN rubber(carboxyl terminated butadiene acrylonitrile rubber) and GMA(glycidyl methacrylate) were reacted on the surface of silica one by one in existence of TEA(triethylamine) or BPO(benzoyl peroxide). The amount of reactant was $2.5{\sim}5.8%$ of treated silica weight. The treated silica was mixed with epoxy resin and MTHPA(methyl tetrahydro phthalic anhydride) in the range of $0{\sim}60%$(wt.%) of total component. The thermal properties were tested for cured products. By using silica treated with silane/rubber or silane/rubber/vinyl, comparing with 3% of rubber mixed directly, it had 13% higher $T_g$ and 10% lower thermal expansion coefficient at $35{\sim}55%$ of silica contents.

  • PDF

Compatibilization of Immiscible Poly(l-lactide) and Low Density Polyethylene Blends

  • Kim Young Fil;Choi Chang Nam;Kim Young Dae;Lee Ki Young;Lee Moo Sung
    • Fibers and Polymers
    • /
    • v.5 no.4
    • /
    • pp.270-274
    • /
    • 2004
  • Blends of poly(l-lactide) (PLA) and low density polyethylene (LDPE) were prepared by melt mixing in order to improve the brittleness of PLA. A reactive compatibilizer with glycidyl methacrylate (GMA), PE-GMA, was required as a compatibilizer due to the immiscibility between PLA and LDPE. It contributes to reduce the domain size of dispersed phase and enhance the tensile properties of PLA/LDPE blends, especially for PLA matrix blends. A reaction product between PLA and PE-GMA, which was formed during melt-mixing and considered to act as a reactive compatibilizer, was characterized using $ ^1H-NMR$ spectroscopy.

Affinity Separations Using Microfabricated Microfluidic Devices: In Situ Photopolymerization and Use in Protein Separations

  • Chen Li;Lee, Wen-Chien;Lee, Kelvin H.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.4
    • /
    • pp.240-245
    • /
    • 2003
  • The use of microfabricated microfluidic devices offers significant advantages over current technologies including fast analysis time and small reagent requirements. In the context of proteomic research, the possibility of using affinity-based separations for prefractionation of samples using microfluidic devices has significant potential. We demonstrate the use of microscale devices to achieve affinity separations of proteins using a device fabricated from borosilicate glass wafers. Photolithography and wet etching are used to pattern individual glass wafers and the wafers are fusion bonded at 650$^{\circ}C$ to obtain enclosed channels. A polymer has been successfully polymerized in situ and used either as a frit for packing beads or, when derivatized with Cibacron Blue 3GA, as a separation matrix. Both of these technologies are based on in situ UV photopolymerization of glycidyl methacrylate (GMA) and trimethylolpropane trimethacrylate (TRIM) in channels.

Removal of metal ions during permeatin across the ion-exchange porous membrane (다공성 이온 교환막의 투과법에 의한 금속이온의 제거)

  • Jung, Kum-yeun;Kim, min
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.130-132
    • /
    • 1998
  • 정밀여과막(MF)막은 $0.1~1\mum$정도의 공경을 가지고 있는 막으로 산업이나 생활분야에서 널리 사용되고 있다. 이러한 정밀여과막에 이온교환기를 부여 시키므로써, 필요로하는 금속이온이나 단백질을 흡착할 수 있는 기능성 분리막이 제조 가능하다. 방사선프라프트 중합법은 고분자를 개질, 수식 또는 기능화시키는 수법으로 사용되고 있다. 본 실험에서는 방사선그라프트중합법을 사용하여 폴리에틸렌 정밀여과막에 에폭시기를 가지는 glycidyl methacrylate(GMA)를 그라프트 중합시킨 후 이온 교환기를 도입하여, 얻어진 막의 특성에 대해 고찰하였다. 본실험의 목적은 다음과 같다. (1) 폴리에틸렌 정밀여과 막에 방사선그라프트 중합법을 사용하여 이온교환기를 도입시키는 반응조건을 검토한다. (2) 도입된 이온교환기에 다른 막의 투과 성능을 조사한다. (3) 투과법에 의한 금속이온의 흡착성능을 조사한다. 여기서, 이온교환기로서는 술폰산(sodium sulfite:$SO_3H$)을 사용하였다.

  • PDF

Paeparation and Properties of Epoxy Copolymers Containing Oxime-urethane Groups as Photobase Generators

  • Chae, Gyu Ho;Song, Hye Bong;Seon, Ho Yong;Jang, Ji Yeong
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.7
    • /
    • pp.690-696
    • /
    • 2000
  • Epoxy copolymers containing oxime urethane groups were prepared by the polymerization of glycidyl methacrylate and N-[5-(benzophenoneoximinocarbonylamino)pentanyl]maleimide (BOPM). Their physical properties were characterized by GPC, DSC and TGA analyses. Photochemical changes of the copolymers were studied by UV, IR spectroscopy, and contact angle measurements. A photoinduced cross-linking reaction in copolymer films was observed by measuring the insoluble fraction. Irradiation of the copolymers at 254 nm UV light leads to the formation of pendant amino groups by photodissociation of the oxime-urethane groups. Treatment of the amino groups with HCl resulted in the formation of ammonium salts, which changed the polymer surface to be hydrophilic. An insoluble fraction of the copolymers increased with irradiation time, heating time, and heating temperature. Cross-linking of the epoxy resin effectively catalyzed by the photogenerated pendant amines upon heating.

Study on CR/SAP Water Swellable Composite for Application of Functional Additives to Improve Water Absorption Rate

  • Seo, Eunho;Lim, Sungwook;Kang, Seungwan;Han, Dongbin;Park, Eunyoung
    • Elastomers and Composites
    • /
    • v.55 no.4
    • /
    • pp.314-320
    • /
    • 2020
  • This study focused on experiments with polyethylene glycol (PEG) and glycidyl methacrylate (GMA), which are functional additives for water-expandable rubber. Polychloroprene rubber (CR)/superabsorbent polymer (SAP) composites were prepared and their cure behaviors, mechanical properties, water absorption rates, and surface morphology were measured based on the functional additives applied. When PEG and GMA were applied to the composites, the water absorption rate increased-including the initial rate-compared to that measured when functional additives were not used. The results also show that PEG has a hydrophilic functional group, which allows it to absorb more water, and GMA acts as a coupling agent between CR and SAP. However, with the introduction of functional additives, the cure rate slowed down and the mechanical properties also decreased.

Enhancing Thermal Conductivity in Epoxy Composites with Functionalized Boron Nitride Nanosheets

  • Yang Soo Kim;Ik-Tae Im;Jong Seok Kim
    • Korean Journal of Materials Research
    • /
    • v.33 no.12
    • /
    • pp.503-510
    • /
    • 2023
  • This comprehensive study delves into the intricate process of exfoliating and functionalizing boron nitride nanosheets (BNNSs) extracted from hexagonal boron nitride (h-BN), and meticulously explores their potential application within epoxy composites. The extensive research methodology encompasses a sequence of treatments involving hydrothermal and sonication processes aimed at augmenting the dispersion of BNNSs in solvents. Leveraging advanced analytical techniques such as Raman spectroscopy, X-ray diffraction, and FTIR spectroscopy, the study rigorously analyzes a spectrum of changes in the BNNS's properties, including layer count variations, interlayer interactions, crystal structure modifications, and the introduction of functional groups. The research also rigorously evaluates the impact of integrating BNNSs, specifically glycidyl methacrylate (GMA)-functionalized BNNSs, on the thermal conductivity of epoxy composites. The conclusive findings exhibit notable enhancements in thermal properties, predominantly attributed to the enhanced dispersion of fillers and enhanced interactions within the epoxy matrix. This pioneering work illuminates the wide potential of functionalized BNNSs for significantly enhancing the thermal conductivity of epoxy composites, paving the way for advanced materials engineering and practical applications.

Preparation of Polypropylene Fabric Adsorbent Containing Phosphoric Acid by Radiation-Induced Graft Copolymerization, and Adsorption of $Cu^{2+}$, $Pb^{2+}$ and $Co^{2+}$ (방사선 그라프트 공중합에 의한 인산기를 갖은 폴리프로필렌 부직포 흡착제의 제조 및 구리, 납, 및 코발트 이온의 흡착)

  • Park, Keun-Su;Chang, Choo-Hwan;Kim, Hak-Jin;Choi, Seong-Ho;Nho, Young Chang
    • Analytical Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.7-12
    • /
    • 1999
  • The cation-exchange adsorbent (CEA) was prepared by radiation-induced grafting of glycidyl methacrylate (GMA) onto polypropylene (PP) fabric and its subsequently phosphonation. The adsorption characteristics of $Pb^{2+}$, $Cu^{2+}$ and $Co^{2+}$ for the CEA were discussed. In the grafting of GMA onto PP fabric, the degree of grafting (%) increased with increasing reaction time, reaction temperature, and pre-irradiation dose. The maximum grafting yield was observed around 60% GMA concentration. The content of phosphoric acid ranges from 2.5 to 3.5 mmol/g with the 85% phosphoric acid. The adsorption of $Pb^{2+}$, $Cu^{2+}$ and $Co^{2+}$ by the CEA was enhanced with increasing phosphoric acid content. The order of adsorption capacity of CEA was $Pb^{2+}$>$Co^{2+}$>$Cu^{2+}$.

  • PDF

Effect of functional group on activity and stability of lipase immobilized on silica-coated magnetite nanoparticles with different functional group (실리카 코팅된 자성 나노입자로의 효소 고정화에 사용된 작용기가 리파아제의 활성과 안정성에 미치는 영향)

  • Lee, Hye Rin;Kim, Moon Il;Hong, Sang Eun;Choi, Jaeyeong;Kim, Young Min;Yoon, Kuk Ro;Lee, Seungho;Ha, Sung Ho
    • Analytical Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.105-113
    • /
    • 2016
  • The present study investigated the immobilization of lipases on silica nanoparticles and silica-coated magnetite nanoparticles as supports with a functional group to enhance the stability of lipase. The influence of functional groups, such as the epoxy group and the amine group, on the activity and stability of immobilized lipase was also studied. The epoxy group and the amino group were introduced onto the surface of nanoparticles by glycidyl methacrylate and aminopropyl triethoxysilane, respectively. Immobilized Candida rugosa lipase on silica nanoparticles and silica-coated magnetite nanoparticles with a functional group showed slightly lower initial enzyme activities than free enzyme; however, the immobilized Candida rugosa lipase retained over 92 % of the initial activity, even after 3 times reuse. Lipase was also immobilized on the silica-coated magnetite nanoparticles by cross-linked enzyme aggregate (CLEA) using glutaraldehyde and covalent binding, respectively, were also studied. Immobilized Candida rugosa lipase on silica nanoparticles and silica-coated magnetite nanoparticles by CLEA and covalent binding showed higher enzyme activities than free enzyme, while immobilized Candida rugosa lipase retained over 73 % of the initial activity after 5 times reuse.