• Title/Summary/Keyword: Glyceollin

Search Result 5, Processing Time 0.027 seconds

Inhibitory effect of glyceollin isolated from soybean against melanogenesis in B16 melanoma cells

  • Lee, Young-Sang;Kim, Hyun-Kyoung;Lee, Kyung-Ju;Jeon, Hye-Won;Cui, Song;Lee, You-Mie;Moon, Byung-Jo;Kim, Yong-Hoon;Lee, Young-Sup
    • BMB Reports
    • /
    • v.43 no.7
    • /
    • pp.461-467
    • /
    • 2010
  • Natural products with non-toxic and environmentally friendly properties are good resources for skin-whitening cosmetic agents when compared to artificial synthetic chemicals. Here, we investigated the effect of glyceollin produced to induce disease resistance responses of soybean to specific races of an incompatible pathogen, phytophthora sojae, on melanogenesis and discussed their mechanisms in melanin biosynthesis. We found that glyceollin inhibits melanin synthesis and tyrosinase activity in B16 melanoma cells without cytotoxicity. To elucidate the mechanism of the effect of glyceollin on melanogenesis, we conducted western blot analysis for melanogenic enzymes such as tyrosinase, tyrosinase-related protein-1 (TRP-1), and TRP-2. Glyceollin inhibited tyrosinase and TRP-1 protein expression. Additionally, glyceollin effectively inhibited intracellular cAMP levels in B16 melanoma cells stimulated by $\alpha$-melanocyte stimulating hormone ($\alpha$-MSH). These results suggest that the whitening activity of glyceollin may be due to the inhibition of cAMP involved in the signal pathway of $\alpha$-MSH in B16 melanoma cells.

An Investigation of Glyceollin I's Inhibitory Effect on The Mammalian Adenylyl (글리세올린 I의 아데니닐 고리화 효소 활성 억제 효능과 결합 부위 비교 분석)

  • Kim, Dong-Chan;Kim, Nam Doo;Kim, Sung In;Jang, Chul-Soo;Kweon, Chang Oh;Kim, Byung Weon;Ryu, Jae-Ki;Kim, Hyun-Kyung;Lee, Suk Jun;Lee, Seungho;Kim, Dongjin
    • Journal of Life Science
    • /
    • v.23 no.5
    • /
    • pp.609-615
    • /
    • 2013
  • Glyceollin I has gained attention as a useful therapy for various dermatological diseases. However, the binding property of glyceollin I to the mammalian adenylyl cyclase (hereafter mAC), a critical target enzyme for the down-regulation of skin melanogenesis, has not been fully explored. To clarify the action mechanism between glyceollin I and mAC, we first investigated the molecular docking property of glyceollin I to mAC and compared with that of SQ22,536, a well-known mAC inhibitor, to mAC. Glyceollin I showed superiority by forming three hydrogen bonds with Asp 1018, Trp 1020, and Asn 1025, which exist in the catalytic site of mAC. However, SQ22,536 formed only two hydrogen bonds with Asp 1018 and Asn 1025. Secondly, we confirmed that glyceollin I effectively inhibits the formation of forskolin-induced cAMP and the phosphorylation of PKA from a cell-based assay. Long term treatment with glyceollin I had little effect on the cell viability. The findings of the present study also suggest that glyceollin I may be extended to be used as an effective inhibitor of hyperpigmentation.

BIOLOGICAL ACTIVITIES OF PRODUCTS FROM SUGAR CANE BAGASSE FERMENTATION BY Pleurotus sajor-caju (사탕수수 찌꺼기를 이용한 여름느타리 발효부산물의 생물활성)

  • Lee, Young-Keun;Chang, Hwa-Hyoung;Kim, Won-Rok;Kim, Jin-Kyu;Kim, Jae-Sung
    • Korean Journal of Environmental Agriculture
    • /
    • v.17 no.1
    • /
    • pp.39-42
    • /
    • 1998
  • In order to evaluate the biological activities of some fractions from the fungal(Pleurotus sajorcaju) fermentation products of sugar cane bagasses, the antimutagenicity, the glyceollin elicitor activity on soybean and the effect on the stem elongation in pea were observed. The alcohol extract fraction and DMSO soluble fraction had excellent antimutagenicity even though it is weaker than that of the extracts from the fruiting bodies. All of the extracts had the ability to elicit glyceollins in soybean cotyledons and these extracts could be helpful for plants to protect themselves from pathogenic contaminations. IAA and the extracts had shown synergistic effects on pea stem elongation in all experimental groups positively determined.

  • PDF

Human Acyl-CoA: Cholesterol Acyltransferase Inhibitory Effect of Flavonoids from Roots of Glycine max (L.) Merr

  • Lee, Jin-Hwan;Seo, Woo-Duck;Jeong, Seong-Hun;Jeong, Tae-Sook;Lee, Woo-Song;Park, Ki-Hun
    • Journal of Applied Biological Chemistry
    • /
    • v.49 no.2
    • /
    • pp.57-61
    • /
    • 2006
  • Isoflavones 1-3 and pterocarpans 4-8 were isolated from methanol extract of roots of Glycine max. In inhibitory effect against human acyl-CoA:cholesterol acytransferase (ACAT)-1 and ACAT-2, glyceollin I 5 showed potent hACAT-1 ($IC_{50}=299.0{\mu}M$) and hACAT-2 ($IC_{50}=82.7{\mu}M$) inhibitory activities.