• Title/Summary/Keyword: Gluteus maximus

Search Result 157, Processing Time 0.028 seconds

Comparison of multifidus and external oblique abdominis activity in standing position according to the contraction patterns of the gluteus maximus

  • Choi, Hyuk-Soon;Lee, Su-Young
    • Physical Therapy Rehabilitation Science
    • /
    • v.5 no.1
    • /
    • pp.40-46
    • /
    • 2016
  • Objective: The purpose of this study was to examine the effect on multifidus and external oblique abdominis muscle activation during hip contraction of three types (concentric, isometric, eccentric) in standing position. Design: Cross-sectional study. Methods: Twenty healthy adult men volunteered to participate in this study. Muscle activation was recorded from gluteus maximus, both multifidus, and both external oblique abdominis by surface electromyography (EMG) while holding position in the type of gluteus maximus contraction. EMG values were normalized by maximum muscle contractions (% maximum voluntary isometric contraction). All subjects performed hip extension with three contraction methods. The type of gluteus maximus contraction using Thera-band was composed of concentric contraction (type 1), isometric contraction (type 2), and eccentric contraction (type 3). To measure muscle activation on the gluteus maximus contraction type, each position were maintained for 5 seconds with data collection taken place during middle three seconds. Muscle activation was measured in each position three times. Results: For the results of this study, there was no significant difference within three contraction patterns of the gluteus maximus (concentric, isometric, and eccentric) each both multifidus, both external oblique abdominis, and gluteus maximus. And there was no significant difference among both multifidus, both external oblique abdominis, and gluteus maximus each hip extension contraction type. Conclusions: These findings suggest that specific contraction types of the gluteus maximus does not lead to a more effective activation of the multifidus, external oblique abdominis, and gluteus maximus.

Changes of Muscle Activity on Functional Movement according to Foot Type (발의 형태에 따른 기능적 움직임의 근활성 변화)

  • Chae, Jung-Byung;Moon, Ok-Yun
    • PNF and Movement
    • /
    • v.9 no.4
    • /
    • pp.41-48
    • /
    • 2011
  • Purpose : The purpose of this study was to assess the tibialis anterior, soleus, gluteus maximus, transverse abdominis muscle activity of tibialis anterior, soleus, gluteus maximus, transverse abdominis according to pronated foot and supinated foot. Methods : Group of pronation and supination were taped using augmented low-day method to make pronated and supinated foot the three case were assessed by agnostic radiology for investigating foot structure. Results : 1) When supinated foot & pronated foot, tibialis anterior & gluteus maximus muscle activity was augmented in one step. 2) When supinated foot & pronated foot, soleus & transverse abdominis muscle activity was decreased in one step. 3) When supinated foot & pronated foot, tibialis anterior & gluteus maximus muscle activity was augmented in squat. 4) When supinated foot & pronated foot, soleus muscle activity was decreased in squat. 5) When pronated foot, transverse abdominis muscle activity was decreased in squat. 6) When supinated foot, transverse abdominis muscle activity was augmented in squat. 7) When pronated foot, transverse abdominis & gluteus maximus & tibialis anterior muscle activity was augmented in sit to stand. 8) When supinated foot, transverse abdominis & gluteus maximus & tibialis anterior muscle activity was decreased in sit to stand. 9) When supinated foot & pronated foot, soleus muscle activity was decreased in sit to stand. Conclusion : 1) Pronated foot & supinated foot effects on soleus, gluteus maximus, transverse abdominis muscle activity in one step. 2) Pronated foot & supinated foot effects on tibialis anterior, gluteus maximus, transverse abdominis muscle activity in squat. 3) Pronated foot & supinated foot effects on soleus, transverse abdominis muscle activity in sit to stand. Therefore we suggest the deformity of the foot effects on tibialis anterior, soleus, gluteus maximus, transverse abdominis muscle activity.

The Comparison of the Onset Time of Hamstring, Gluteus Maximus, and Lumbar Erector Spinae Muscle Activity During Hip Extension Between Subjects With Low Back Pain and Healthy Subjects (고관절 신전시 요통환자와 정상인의 슬괵극, 대둔근, 요추기립근의 근 수축 개시시간 비교)

  • Kwon, Oh-Yun;Koh, Eun-Kyung
    • Physical Therapy Korea
    • /
    • v.9 no.2
    • /
    • pp.33-42
    • /
    • 2002
  • The purpose of this study was to compare the onset times of muscle activities and the order of muscle firing in hamstring gluteus maximus, and lumbar erector spinae muscle during active hip extension between subjects with low back pain (LBP) and healthy subjects. Thirty subjects, 15 with LBP and 15 healthy subjects, participated in this study. Electromyographic activity was recorded during active hip extension in prone and standing position. Relative onset times of these muscle activities were determined. Similar muscle firing order in hamstring, gluteus maximus, and lumbar erector spinae muscle showed in both groups and positions. However, the onset time of gluteus maximus was significantly later in prone and standing active hip extension in subjects with LBP than in healthy subjects. The onset time of lumber erector spinae muscle activity was significantly delayed in subjects with LBP in standing active hip extension, The delayed onset times of gluteus maximus and lumbar erector spinae muscles' activities were probably related to LBP. Further studies are needed to identify whether the delayed onset times of gluteus maximus and lumbar erector spinae muscle activities are the contributing factors to LBP.

  • PDF

The Effect of One Leg Deadlift Exercise on the Muscle Activity of Lower Extremities according to the Weight Characteristics

  • Park, Tae Geun;Lee, Jae Kwang
    • The Journal of Korean Physical Therapy
    • /
    • v.34 no.5
    • /
    • pp.267-271
    • /
    • 2022
  • Purpose: This study examined the effects of a kettlebell and aqua bag on the gluteus maximus, gluteus medius, and vastus medialis lower extremity muscle strength during a one-leg deadlift, a top-down exercise. Methods: Twenty healthy adults were enrolled in the one-leg deadlift exercise under two conditions. The muscle activity of the gluteus maximus, gluteus medius, and vastus medialis was measured by surface electromyography (S-EMG). A paired t-test was used for statistical analysis, and the statistical significance criteria were set to p<0.05. Results: A comparison of the muscle activity according to the degree of contraction of the gluteus maximus revealed low muscle activity in AD exercise compared to KD exercise (p<0.05), and there was no significant difference in the gluteus medius and vastus medialis (p<0.05). Conclusion: These results suggest that when the one-leg deadlift exercise is performed according to the weight characteristics, the gluteus maximus is suitable for intervention using a kettlebell, and the gluteus medius and vastus medialis are more suitable for intervention by providing instability using an aqua bag.

The Effects of Hip Extension Velocity on the Relative Onset Time of the Gluteus Maximus in Relation to the Hamstring (고관절 신전속도가 슬괵근에 대한 대둔근의 상대적 근수축 개시시간에 미치는 영향)

  • Chang, Young-Jin;Ko, Eun-Hye;Roh, Jung-Suk;Cynn, Heon-Seock;Kim, Tack-Hoon
    • Physical Therapy Korea
    • /
    • v.13 no.2
    • /
    • pp.70-76
    • /
    • 2006
  • The purpose of this study was to investigate the effects of hip extension velocity (7.5 degree/second, 30 degree/second) on the relative onset time of the gluteus maximus in relation to the hamstring during hip extension in prone position. Thirteen healthy male subjects (mean age=22.6 years [SD=1.8], mean weight=73.4 kg [SD=10.3], mean height=176.1 cm [SD=6.3]) voluntarily participated in this study. Electromyographic data was collected on the gluteus maximus and hamstring to determine onset time. Statistical analyses were performed with the paired t-test. The results showed that the onset time of the hamstring was significantly faster than that of the gluteus maximus in both fast and slow hip extension velocity. The gluteus maximus began contraction .079 seconds later following the contraction of the hamstring. The onset time of the hamstring was significantly faster in fast hip extension velocity compared with slow hip extension velocity. In conclusion, it was determined that the onset time of the gluteus maximus was faster with fast hip extension velocity compared with slow hip extension velocity. There was a statistically significant difference between the onset times of the gluteus maximus and hamstring in relation to the two velocities (p<.05). Further study is needed to examine whether the velocity of hip extension can influence the onset time in a similar fashion in patients with low back pain.

  • PDF

Intramuscular Schwannoma Arising from the Gluteus Maximus Muscle - A Case Report - (대둔근에 발생한 근육 내 신경초종 - 증례 보고 -)

  • Kim, Sang Rim;Nam, Kwang Woo;Choi, Sung Wook;Bang, Hyeong Sik;Seo, Kyu Bum
    • Archives of Reconstructive Microsurgery
    • /
    • v.21 no.2
    • /
    • pp.165-169
    • /
    • 2012
  • Intramuscular schwannomma is unusual and rare cases were reported in the literature in the gluteus maximus muscle. We present a case of an intramuscular schwannoma arising from the gluteus maximus muscle in a sixty-five-year-old woman. An oval in shape and well encapsulated tumor was found embedded with the gluteus maximus muscle, and then the lesion was excised surgically. Two years following excision of the lesion, the patient remained asymptomatic, with no evidence of local recurrence.

  • PDF

The Effect of Erector Spine and Gluteus maximus Muscle Activity on Bridging Exercise with Stabilizer Pressure Biofeedback (생체자기제어 측정 기구를 이용한 교각운동이 척추세움근과 큰볼기근의 근활성도에 미치는 영향)

  • Go, Seong-Uk;In, Tae-Sung
    • Journal of Korean Physical Therapy Science
    • /
    • v.24 no.2
    • /
    • pp.9-16
    • /
    • 2017
  • Purpose: This study was conducted in order to examine the changes of muscle activitis of erector spine muscles and Gluteus maximus during the bridge exercise with adductor muscles. Method: After attaching the EMG device to the Gluteus maximus and erector spine muscles of the 100 healthy adult males in their 20s, applying the stabilizer pressure biofeedback device between the knees, the bridge movement was carried out 10 seconds. Result: During the exercise of the bridge movement, the muscular activities in erector spine and gluteus maximus were significantly different in ralation to the simultaneous contractive adductor muscles of the bridge(p<.05). Conclusion: Thus, the bridge exercise is carried out in conjunction with the simultaneous contraction of adductor muscles that suggests that the training are more effective in erector spine and gluteus maximus activities.

The Effects of a Gluteus Maximus Strengthening Exercise on the Spinal Alignment and Dynamic Balance of Kyphosis Subjects (큰볼기근 근력강화운동이 척추뒤굽음자세를 가진 대상자의 척추정렬 및 동적균형에 미치는 영향)

  • Park, Kanghui;Park, Geuntae;Park, Sookyoung
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.7 no.3
    • /
    • pp.181-188
    • /
    • 2019
  • Purpose: This study was performed to determine the effects of a gluteus maximus strengthening exercise on both spinal alignment and dynamic balance in subjects with kyphosis. Methods: We measured the kyphosis angle of 150 subjects and selected those whose kyphosis angle was > $50^{\circ}$. The participants included 10 male and 12 female college students. After a gluteus maximus strengthening exercise was applied, the subjects were measured by the formetric 4D and Biorescue systems. The collected data were analyzed by a paired t-test with the SPSS (Ver. 21) program for spinal alignment and dynamic balance comparisons both before and after the gluteus maximus strengthening exercise was completed. Results: The results regarding spinal alignment showed statistically significant decreases in pelvic tilt, kyphotic angle, and lordotic angle after the intervention (p < .05). However, trunk imbalance, pelvic torsion, surface rotation, and lateral deviation were not significantly different after the exercise. The results of the dynamic balance showed statistically significant increases in limits of stability after the exercise (p < .05). Conclusion: The above results suggest that the implemented gluteus maximus strengthening exercise may be effective for spinal alignment and dynamic balance in subjects with kyphosis.

Effects of Different External Loads on the Activities of the Gluteus Maximus and Biceps Femoris during Prone Hip Extension in Healthy Young Men

  • Bae, Chang-Hwan;Choe, Yu-Won;Kim, Myoung-Kwon
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.15 no.2
    • /
    • pp.1-9
    • /
    • 2020
  • PURPOSE: This study examined the effects of different external loads on the muscle activities around the hip during prone hip extension with knee flexion (PHEKF) exercise in healthy young men. METHODS: Sixteen healthy adult males participated in the study. A pressure biofeedback unit was used to provide feedback to the participants during the abdominal drawing-in maneuver (ADIM) with PHEKF. Sandbags (0 kg, 1 kg, 2 kg, and 3 kg) were used to provide external resistance. The quadriceps was contracted to maintain knee flexion 90° against resistance. Each resistance condition using a sandbag weight was given in random order. Surface electromyography (sEMG) was used to measure the electrical activity of the gluteus maximus, biceps femoris, and erector spinae during PHEKF. RESULTS: The muscle activity of the gluteus maximus was highest with the 3 kg resistance and lowest with 0 kg (F = 128.46, P = .00). The muscle activities of the biceps femoris and erector spinae were highest with 0 kg and lowest with 3 kg (F = 29.49, P = .00). The muscle activity rate of the gluteus maximus/biceps femoris was highest with 3 kg and lowest with 0 kg (F = 37.49, P = .00). CONCLUSION: The activity of the gluteus maximus was increased using a higher external weight load during PHEKF, while the activity of the biceps femoris decreased. These findings suggest that an external weight is needed during hip extensor exercise to strengthen the gluteus maximus and inhibit the biceps femoris.

The Effect of Standing and Kneeling Postures on Muscle Activity for Squat

  • Jeong, Taewoong;Chung, Yijung
    • Physical Therapy Rehabilitation Science
    • /
    • v.10 no.4
    • /
    • pp.487-492
    • /
    • 2021
  • Objective: This study aimed to identify the effects of assuming two types of posture (standing and kneeling) during squat exercise on lower body muscle activity. Design: Cross-sectional study Methods: Twenty-five healthy adults (18 men and 7 women) were instructed to perform the squat exercises while assuming two types of posture (standing and kneeling). EMG (Electromyography) data (% maximum voluntary isometric contraction) were recorded three times from the rectus femoris (RF), gluteus maximus (GMax), gluteus medius (GMed) and biceps femoris (BF) of participant's dominant side and the mean values were analyzed. Results: During the squat exercise with all postures, there was statistically significant difference on rectus femoris, gluteus maximus, gluteus medius, and biceps femoris muscle activity (p<0.05). The results showed that, there was significantly greater rectus femoris, gluteus medius, and biceps femoris muscle activity in standing posture than in kneeling position (p<0.05). However, the gluteus maximus muscle activity was significantly greater with kneeling posture compared to standing posture (p<0.05). Conclusions: With standing posture, it is showed that rectus femoris, gluteus medius, and biceps femoris muscle activity was greater than kneeling position. While the gluteus maximus muscle activity with standing posture was less than with kneeling posture. Therefore, it is considered that this study can be used as a selective indicator of exercise posture for strengthening specific muscle or weakness caused by paralysis.