• 제목/요약/키워드: Glutathione levels

검색결과 1,028건 처리시간 0.031초

Extract from Edible Red Seaweed (Gelidium amansii) Inhibits Lipid Accumulation and ROS Production during Differentiation in 3T3-L1 Cells

  • Seo, Min-Jung;Lee, Ok-Hwan;Choi, Hyeon-Son;Lee, Boo-Yong
    • Preventive Nutrition and Food Science
    • /
    • 제17권2호
    • /
    • pp.129-135
    • /
    • 2012
  • GPAR{elidium (G.) amansii is a red alga widely distributed in the shallow waters around East Asian countries. We investigated the effect of G. amansii on lipid accumulation and ROS (Reactive Oxygen Species) production in 3T3-L1 cells. G. amansii extracts dose-dependently inhibited lipid formation and ROS generation in cultured cells. Our results showed that anti-adipogenic effect of G. amansii was due to the reduction in mRNA expressions of PPAR${\gamma}$(peroxisome proliferator-activated receptor-${\gamma}$) and aP2 (adipocyte protein 2). G. amansii extracts significantly decreased mRNA levels of a ROS-generator, NOX4 (nicotinamide adenine dinucleotide phosphate hydrogen oxidase 4), and increased the protein levels of antioxidant enzymes including SOD1/2 (superoxide dismutases), Gpx (glutathione peroxidase), and GR (glutathione reductase), which can lead to the reduction of ROS in the cell. In addition, the G. amansii extract enhanced mRNA levels of adiponectin, one of the adipokines secreted from adipocytes, and GLUT4, glucose uptake protein. Taken together, our study shows that G. amansii extract inhibited lipid accumulation and ROS production by controlling adipogenic signals and ROS regulating genes.

The Effects of Bee Venom Pharmacopuncture on Middle Cerebral Artery Occlusion Ischemic Cerebral Damage in Mice

  • Lee, Ji-In;Song, Ho-Sueb
    • Journal of Acupuncture Research
    • /
    • 제36권4호
    • /
    • pp.220-229
    • /
    • 2019
  • Background: The therapeutic potential of Bee Venom Pharmacopuncture (BVP) on acute ischemic cerebral infraction was determined in mice in vivo and in vitro. Methods: Analysis of acute ischemic cerebral infraction was performed using 7 week old male ICR mice (n = 20) and microglial BV-2 cells. Bee venom ($5{\mu}g/kg$) was injected into the caudal vein of middle cerebral artery occlusion (MCAo) mice (1 hour after reperfusion, 3 hours after MCAo probe insertion), and also used to treat LPS-stimulated microglial BV-2 cells (1, 2, $5{\mu}g/mL$). Markers of inflammation were monitored. Results: NO declined statistically significantly in BVP treated MCAo mice compared to the untreated MCAo group (p < 0.05). Compared to the MCAo group, the BVP-treated MCAo group showed a decreased production volume of malondialdehyde, but an increased glutathione/oxidized glutathione ratio. Compared to the untreated MCAo group, the BVP treated MCAo group showed a statistically significant decline in TNF and $IL-1{\beta}$ levels (p < 0.05). BVP inhibited the levels of p65, p50, $p-I{\kappa}B-{\alpha}$, and levels of p-ERK1/2, p-JNK2, p-P38 declined. Conclusion: BVP is effective at dampening the inflammatory response in vivo and in vitro and may supplement rt-PA treatment.

흡연 여부에 따른 Glutathione S-transferase (GST) M1 및 T1 유전자 다형성이 우리나라 젊은 성인의 임파구 DNA 손상과 항산화 영양상태 지표들 간의 관련성에 미치는 영향 (Lymphocyte DNA Damage and Anti-Oxidative Parameters are Affected by the Glutathione S-Transferase (GST) M1 and T1 Polymorphism and Smoking Status in Korean Young Adults)

  • 한정화;이혜진;강명희
    • Journal of Nutrition and Health
    • /
    • 제44권5호
    • /
    • pp.366-377
    • /
    • 2011
  • Glutathione S-transferase (GST) is a multigene family of phase II detoxifying enzymes that metabolize a wide range of exogenous and endogenous electrophilic compounds. GSTM1 and GSTT1 gene polymorphisms may account for inter-individual variability in coping with oxidative stress. We investigated the relationships between the level of lymphocyte DNA and antioxidative parameters and the effect on GST genotypes. GSTM1 and GSTT1 were characterized in 301 young healthy Korean adults and compared with oxidative stress parameters such as the level of lymphocyte DNA, plasma antioxidant vitamins, and erythrocyte antioxidant enzymes in smokers and non smokers. GST genotype, degree of DNA damage in lymphocytes, erythrocyte activities of superoxide dismutase, catalase, and glutathione peroxidase (GSH-Px), and plasma concentrations of total radical-trapping antioxidant potential (TRAP), vitamin C, ${\alpha}$- and ${\gamma}$-tocopherol, ${\alpha}$- and ${\beta}$-carotene, and cryptoxanthin were analyzed. Lymphocyte DNA damage assessed by the comet assay was higher in smokers than that in non-smokers, but the levels of plasma vitamin C, ${\beta}$-carotene, TRAP, erythrocyte catalase, and GSH-Px were lower than those of non-smokers (p < 0.05). Lymphocyte DNA damage was higher in subjects with the GSTM1- or GSTT1-present genotype than those with the GSTM1-present or GSTT1- genotype. No difference in erythrocyte antioxidant enzyme activities, plasma TRAP, or vitamin levels was observed in subjects with the GSTM1 or GSTT1 genotypes, except ${\beta}$-carotene. Significant negative correlations were observed between lymphocyte DNA damage and plasma levels of TRAP and erythrocyte activities of catalase and GSH-Px after adjusting for smoking pack-years. Negative correlations were observed between plasma vitamin C and lymphocyte DNA damage only in individuals with the GSTM1-present or GSTT1- genotype. The interesting finding was the significant positive correlations between lymphocyte DNA damage and plasma levels of ${\alpha}$-carotene, ${\beta}$-carotene, and cryptoxanthin. In conclusion, the GSTM1- and GSTT1-present genotypes as well as smoking aggravated antioxidant status through lymphocyte DNA damage. This finding confirms that GST polymorphisms could be important determinants of antioxidant status in young smoking and non-smoking adults. Consequently, the protective effect of supplemental antioxidants on DNA damage in individuals carrying the GSTM1- or GSTT1-present genotypes might show significantly higher values than expected.

Metabolic engineering of Vit C: Biofortification of potato

  • Upadhyaya, Chandrama P.;Park, Se-Won
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2010년도 정기총회 및 추계학술발표회
    • /
    • pp.14-14
    • /
    • 2010
  • Vitamin C (ascorbic acid) is an essential component for collagen biosynthesis and also for the proper functioning of the cardiovascular system in humans. Unlike most of the animals, humans lack the ability to synthesize ascorbic acid on their own due to a mutation in the gene encoding the last enzyme of ascorbate biosynthesis. As a result, vitamin C must be obtained from dietary sources like plants. In this study, we have developed two different kinds of transgenic potato plants (Solanumtuberosum L. cv. Taedong Valley) overexpressing strawberry GalUR and mouse GLoase gene under the control of CaMV 35S promoter with increased ascorbic acid levels. Integration of the these genes in the plant genome was confirmed by PCR and Southern blotting. Ascorbic acid(AsA) levels in transgenic tubers were determined by high-performance liquid chromatography(HPLC). The over-expression of these genes resulted in 2-4 folds increase in AsA intransgenic potato and the levels of AsA were positively correlated with increased geneactivity. The transgenic lines with enhanced vitamin C content showed enhanced tolerance to abiotic stresses induced by methyl viologen(MV), NaCl or mannitol as compared to untransformed control plants. The leaf disc senescence assay showed better tolerance in transgenic lines by retaining higher chlorophyll as compared to the untransformed control plants. Present study demonstrated that the over-expression of these gene enhanced the level of AsA in potato tubers and these transgenics performed better under different abiotic stresses as compared to untransformed control. We have also investigated the mechanism of the abiotic stress tolerance upon enhancing the level of the ascorbate in transgenic potato. The transgenic potato plants overexpressing GalUR gene with enhanced accumulation of ascorbate were investigated to analyze the antioxidants activity of enzymes involved in the ascorbate-glutathione cycle and their tolerance mechanism against different abiotic stresses under invitro conditions. Transformed potato tubers subjected to various abiotic stresses induced by methyl viologen, sodium chloride and zinc chloride showed significant increase in the activities of superoxide dismutase(SOD, EC 1.15.1.1), catalase, enzymes of ascorbate-glutathione cycle enzymes such as ascorbate peroxidase(APX, EC 1.11.1.11), dehydroascorbate reductase(DHAR, EC 1.8.5.1), and glutathione reductase(GR, EC 1.8.1.7) as well as the levels of ascorbate, GSH and proline when compared to the untransformed tubers. The increased enzyme activities correlated with their mRNA transcript accumulation in the stressed transgenic tubers. Pronounced differences in redox status were also observed in stressed transgenic potato tubers that showed more tolerance to abiotic stresses when compared to untransformed tubers. From the present study, it is evident that improved to lerance against abiotic stresses in transgenic tubers is due to the increased activity of enzymes involved in the antioxidant system together with enhanced ascorbate accumulated in transformed tubers when compared to untransformed tubers. At moment we also investigating the role of enhanced reduced glutathione level for the maintenance of the methylglyoxal level as it is evident that methylglyoxal is a potent cytotoxic compound produced under the abiotic stress and the maintenance of the methylglyoxal level is important to survive the plant under stress conditions.

  • PDF

양식(養殖) 넙치의 Ceroid증(症) 치료(治療)에 대(對)하여 -Glutathione 첨가(添加)에 따른 혈액성상(血液性狀)- (Treatment of Ceroidosis for Cultured Flounder, Paralichthys olivaceus -Hematological characteristic of flounder with glutathione supplemented diets-)

  • 이창훈;하동수;전세규;최동림
    • 한국어병학회지
    • /
    • 제4권2호
    • /
    • pp.59-70
    • /
    • 1991
  • Ceroid증(症)의 치료효과(治療效果)를 알기 위한 혈액(血液) 성상(性狀)은 다음과 같다. 1. 넙치 혈구상(血球像)의 모든 값은 glutathione을 투여(投與)한 7일(日)째에 급격(急激)히 증가(增加)하기 시작(始作)하여 28일(日) 이후(以後)부터는 거의 정상치(正常値)를 유지하였다. 2. 총단백(總蛋白), 혈당(血糖), 인(燐), 무기인(無機燐), 혈액(血液) 요소성(尿素性) 질소(窒素), 총(總) 콜레스트롤, 중성지방(中性脂肪), GOT 및 GPT 값은 투여(投與) 7일(日)째에 급격(急激)히 감소(減少)하기 시작(始作)하여 21일(日)째부터는 정상치(正常値)를 유지 하였다. 3. 1일(日) 1kg 먹이량에 5mg 10mg 첨가(添加)하여 3주일간(週日間) 투여(投與)하면 넙치의 ceroid증(症)이 치료(治療)되는 것을 알 수 있었다.

  • PDF

다양한 식물배양세포주의 Glutathione 함량 (Glutathione Contents in Various Plant Cell Lines)

  • 이정은;안영옥;권석윤;이행순;김석원;박일현;곽상수
    • 식물조직배양학회지
    • /
    • 제27권1호
    • /
    • pp.57-61
    • /
    • 2000
  • 식물배양세포의 항산화기구를 이해하기 위하여 다양한 유도조건에서 확립된 24종의 세포주를 대상으로 환원형 (GSH)과 산화형 (GSSG)의 glutathione 함량을 조사하였다. 배양세포의 전체 glutathione 함량 ($\mu$g/g cell fresh wt)은 98$\pm$27로 식물종에 따라 큰 차이가 없었다. 배양세포의 환원형 GSH과 산화형 GSSG의 평균함량 ($\mu$g/g fr wt)은 각각 72$\pm$20와 26$\pm$10을 나타내었다. 배양세포의 전체 glutathione 중에서 평균 환원형 GSH는 약 73%를 차지하였다. 황금 (Scutellaria baicalensis)배양세포의 현탁배양에 따른 GSH 함량 ($\mu$g/g cell fresh wt)은 계대배양부터 대수증식기까지는 계속하여 감소하여 세포생장 정지기인 배양후 13일에는 84까지 감소한 후 다시 증가하였다가 배양후기에는 크게 감소하였다. 한편 GSSG의 함량 ($\mu$g/g cell fresh wt)은 오히려 대수증식기까지는 증가하여 배양후 13일에는 31을 나타내었고 배양후기인 25일에는 48로 오히려 산화형 GSSG의 비율이 높았다. 이러한 결과는 GSH와 GSSG의 비율이 배양세포의 생장과 항산화기구에 주요하게 관여하고 있음을 시사한다.

  • PDF

녹각추출물이 Benzo(a)pyrene에 의한 간손상에 미치는 영향 (Effect of Old Antler Extracts on the Benzo(a)pyrene-Induced Hepatotoxicity in Rats)

  • 김명주;조수열;박은미;윤수홍
    • 한국식품영양과학회지
    • /
    • 제22권4호
    • /
    • pp.412-417
    • /
    • 1993
  • 녹각이 동양의학에서 보혈강장제라는 사실에 근거하여 생체내 물질대사에 중요한 역할을 하는 간장의 장해시 효소활성 변동에 미치는 녹각의 효능을 구명할 목적의 일환으로 간독성 물질인 benzo(a)pyrene으로 간장해를 유도한 후 각각의 녹각추출물을 급여함으로써 간해독 과정에 관여하는 효소의 활성을 생화학적 측면에서 비교하였다. 각각의 녹각추출물 급여로 인한 체중증가량, 식이섭취량 및 식이효율은 녹각추출물 군간의 유의성은 나타나지 않았으나, Control군에 비하여 유의적인 증가를 보였고 B(a)P 투여군에서도 Cont-B군에 비하여 녹각추출물 급여군에서 유의적인 증가를 나타내었다. 체중 100g당 장기무게는 간장의 경우 benzo (a)pyrene 투여로 증가하는 경향을 보였으나 비장과 신장 및 심장에는 별다른 차이가 없었다. 녹각추출물 급여로 4주간 사육한 흰쥐에서 간해독계 효소중 cytochrome P-450의 함량은 Control 군에 비하여 ben-zo(a)pyrene 투여로 유의적인 감소를 보였으며, 녹각추출물과 benzo(a)pyrene을 병행 투여한 실험군 중 Water-B군이 정상군에 가깝게 증가되었다. 간조직 중의 glutathione함량은 Water군과 Neutral군에서 증가를 보였으나 benzo(a)pyrene 투여로 감소하였다. 또한 간조직 중의 glutathione peroxidase 활성은 녹각추출물 급여에 따른 영향은 없었으며, benzo(a)pyrene 투여로 감소된 활성이 water-B군에서 정상군에 가까운 증가를 나타내었다. 간조직 중의 과산화지질 함량은 Water-B군에서 그 감소 정도가 가장 현저하였다. 이상의 결과를 종합해 볼 때 녹각추출물 중의 water-ext.와 neutral-ext.에 함유되어 있는 유효성분이 간장의 해독기구 효소활성을 유도하고, benzo(a)pyrene의 대사를 촉진시키므로 간손상을 억제할 수 있을 것으로 생각된다.

  • PDF

Protective Role of Selenium and High Dose Vitamin E against Cisplatin - Induced Nephrotoxicty in Rats

  • Aksoy, Asude;Karaoglu, Aziz;Akpolat, Nusret;Naziroglu, Mustafa;Ozturk, Turkan;Karagoz, Zuhal Karaca
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권16호
    • /
    • pp.6877-6882
    • /
    • 2015
  • Background: Cisplatin (CDDP) is one of the most active cytotoxic agents in the treatment of cancer. We investigated the effect of selenium (Se) with high dose vitamin E (VE) administration to prevent CDDP-induced nephrotoxicity in rats. Materials and Methods: In this study, 40 female Wistar rats were randomly divided into five equal groups. The first group, which served as the control, was administered physiological saline (2.5 cc/day, 5 days) intraperitoneally (IP), while group A was administered cisplatin (6 mg/kg BW/ single dose) plus physiological saline IP. Groups B, C, D received IP five doses of Se (1.5 mg/kg BW), and a high dose of VE (1000 mg/kg BW) (Se-VE) in combination before, simultaneously, and after CDDP, respectively. The rats were sacrificed five days after CDDP administration. Plasma malondialdehide (MDA), glutathione peroxidase (GSH-Px), reduced glutathione (GSH), catalase, urea, creatinine levels, renal histopathological changes were measured. Results: The histopathological injury score, plasma levels of MDA, urea, creatinine were found to increase in group A compared to the control (p<0.05), while plasma levels of GSH-Px, GSH and catalase decreased (p<0.05). In contrast, plasma levels of MDA decreased (p<0.05) in groups B, C, D, which were treated with Se- VE, whereas levels of GSH-Px, GSH were found to increase only for group D (p<0.05). Plasma urea, creatinine levels improved in the treatment groups compared to group A (p<0.001). Histopathological changes caused by CDDP were also significantly improved after Se-VE treatment (p<0.05). Conclusions: Oxidative stress increases with CDDP-induced nephrotoxicity in rats. Se-VE supplementation might thus play a role in the prevention of CDDP-induced nephrotoxicity in patients.

식이에 첨가한 Conjugated Linoleic Acid (CLA)가 만성적으로 알코올을 섭취한 쥐에서 간조직의 항산화 체계에 미치는 영향 (Effects of Dietary Conjugated Linoleic Acid (CLA) on Antioxidant System in the Liver of Chronically Ethanol-Treated Rats)

  • 김세나;김민석;박현서
    • Journal of Nutrition and Health
    • /
    • 제40권2호
    • /
    • pp.105-110
    • /
    • 2007
  • The study was designed to observe antioxidant activities of conjugated linoleic acid (CLA) by determining antioxidant enzyme protein levels [cytochrome P4502 El (CYP2E1), Copper, Zinc-superoxide dismutase (CuZn-SOD), glutathione peroxidase (CSH-Px), glutathione S-transferase (GST)] by Western blot analysis and the levels of ${\alpha}$-tocopherol and 2-thiobarbituric acid reactive substances (TBARS) in the liver of chronically ethanol-treated rats. Sixty Sprague Dawley male rats were divided into 3 groups (Control, EtOH, EtOH+CLA). All rats were fed Lieber-DeCarli liquid diet for 4 weeks by pair-feeding against the EtOH group. The liquid diet was supplemented with 1.77g CLA mixture per kg diet in the EtOH+CLA group. Isocaloric maltose dextrin was added in replace of 50g ethanol (36%kcal) for the Control group. Ethanol ingestion significantly increased the levels of CYP2E1 protein and TBARS, but significantly reduced CuZn-SOD protein level and increased GST protein level. There was no significant effect on the level of GSH-Px protein and ${\alpha}$-tocopherol in the liver by ethanol. CLA supplementation with ethanol significantly increased the levels of CuZn-SOD, GSH-Px and GST and also significantly attenuated TBARS level, whereas there was no significant effect on the levels of CYP2E1 protein and ${\alpha}$-tocopherol by CLA. Overall, the CLA supplemented to ethanol could significantly increase the levels of CuZn-SOD, GSH-Px and GST proteins and reduce the level of TBARS in the liver of chronically ethanol-treated rats.

β-Carotene의 섭취가 당뇨 유도 흰쥐의 간조직 항산화효소 활성과 Glutathione 함량에 미치는 영향 (Effect of Dietary Supplementation of β-Carotene on Hepatic Antioxidant Enzyme Activities and Glutathione Concentration in Diabetic Rats)

  • 장정현;이경순;서정숙
    • 한국식품영양과학회지
    • /
    • 제40권8호
    • /
    • pp.1092-1098
    • /
    • 2011
  • 본 연구에서는 당뇨병의 치료에 중요한 저해요인으로 제기되고 있는 당뇨합병증을 예방하고자 녹황색 채소 등을 통해 식사 시 한국인들이 쉽게 섭취할 수 있는 ${\beta}$-carotene의 혈관계 합병증 예방효과를 분석하고자 하였다. 간 미토콘드리아에서의 catalase 활성은 ${\beta}$-carotene을 급여한 비당뇨군에서 유의적으로 높은 활성을 나타내었으나 당뇨군에서는 ${\beta}$-carotene 급여에 의한 영향을 나타내지 않았다. 간 사이토졸 내의 superoxide dismutase 활성은 ${\beta}$-carotene을 급여하지 않은 당뇨군에서 그 활성이 가장 저하되었으나 ${\beta}$-carotene 공급에 의해 유의적으로 증가되었다. 간 사이토졸 내의 glutathione-S-transferase 활성은 ${\beta}$-carotene의 급여에 의한 차이가 없었다. 간 마이크로솜에서의 glucose-6-phosphatase 활성은 대조군에 비하여 ${\beta}$-carotene을 급여하지 않은 당뇨군에서 유의적으로 높게 나타났으나 ${\beta}$-carotene을 급여한 당뇨군에서는 활성이 유의적으로 저하되었다. 간조직의 환원형 glutathione 함량은 당뇨군에서 유의적으로 감소되었으며, 당뇨군에서 ${\beta}$-carotene의 급여로 증가하였다. 이상의 결과에서 볼 때 ${\beta}$-carotene의 섭취는 당뇨 유도에 의한 산화스트레스가 증가된 생리적 상태에서 glutathione의 소모를 감소시키고, 항산화 효소계 중 특히 superoxide dismutase 활성을 유도하여 과산화 라디칼을 환원시킴으로써 활성산소에 의해 유발되는 산화적 손상의 일차적 방어에 관여한 것으로 여겨진다. 따라서 인체시험 등을 통한 후속연구와 연계하여 ${\beta}$-carotene 수준을 적절하게 보충 섭취한다면 당뇨로 인한 항산화계 활성의 변화를 조절함으로써 산화스트레스에 대한 보호효과를 나타내어 당뇨병 합병증의 예방에 기여할 수 있을 것으로 여겨진다.