• 제목/요약/키워드: Glut4

검색결과 182건 처리시간 0.032초

Investigation of the Nature of the Endogenous Glucose Transporter(s) in Insect Cells

  • Lee, Chong-Kee
    • BMB Reports
    • /
    • 제32권5호
    • /
    • pp.429-435
    • /
    • 1999
  • Unlike the mammalian glucose transporter GLUT1, little is known about the nature of the endogenous sugar transporter(s) in insect cells. In order to establish the transport characteristics and other properties of the sugar transport proteins of Sf9 cells, a series of kinetic analyses was performed. A saturable transport system for hexose uptake has been revealed in the insect cells. The apparent affinity of this transport system(s) for 2-deoxy-D-glucose was relatively high, the $K_m$ for uptake being <0.5 mM. To further investigate the substrate and inhibitor recognition properties of the insect cell transporter, the ability of other sugars or drugs to inhibit 2-deoxy-D-glucose transport was examined by measuring inhibition constants ($K_j$). Transport was inhibited by D-mannose, D-glucose, and D-fructose. However, the apparent affinity of the C-4 epimer, D-galactose, for the Spodoptera transporter was relatively low, implying that the hydroxyl group at the C-4 position may play a role in the strong binding of glucose and mannose to the transporter. The results also showed that transport was stereoselective, being inhibited by D-glucose but not by L-glucose. It is therefore concluded that insect cells contain an endogenous glucose transport activity that in several aspects resembles the human erythrocyte glucose transporter. However, the mammalian and insect transporters were different in some of their kinetic properties, namely, their affinities for fructose and for cytochalasin B.

  • PDF

Lignosulfonic acid promotes hypertrophy in 3T3-L1 cells without increasing lipid content and increases their 2-deoxyglucose uptake

  • Hasegawa, Yasushi;Nakagawa, Erina;Kadota, Yukiya;Kawaminami, Satoshi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제30권1호
    • /
    • pp.111-118
    • /
    • 2017
  • Objective: Adipose tissue plays a key role in the development of obesity and diabetes. We previously reported that lignosulfonic acid suppresses the rise in blood glucose levels through the inhibition of ${\alpha}$-glucosidase activity and intestinal glucose absorption. The purpose of this study is to examine further biological activities of lignosulfonic acid. Methods: In this study, we examined the effect of lignosulfonic acid on differentiation of 3T3-L1 cells. Results: While lignosulfonic acid inhibited proliferation (mitotic clonal expansion) after induction of differentiation, lignosulfonic acid significantly increased the size of accumulated lipid droplets in the cells. Semi-quantitative reverse transcription polymerase chain reaction analysis showed that lignosulfonic acid increased the expression of the adipogenic transcription factor, peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$), leading to increased glucose transporter 4 (Glut-4) expression and 2-deoxyglucose uptake in differentiated 3T3-L1 cells. Additionally, feeding lignosulfonic acid to diabetic KK-Ay mice suppressed increase of blood glucose level. Conclusion: Lignosulfonic acid may be useful as a functional anti-diabetic component of food.

Fermented Ginseng Attenuates Hepatic Lipid Accumulation and Hyperglycemia through AMPK Activation

  • Kim, Do-Yeon;Park, Jong-Seok;Yuan, Hai-Dan;Chung, Sung-Hyun
    • Food Science and Biotechnology
    • /
    • 제18권1호
    • /
    • pp.172-178
    • /
    • 2009
  • Fermented ginseng (FG) is an ethanol extract of ginseng radix processed with $\beta$-galactosidase. It was hypothesized that FG may exert anti-hyperlipidemic and anti-diabetic activities through modulating AMP-activated protein kinase (AMPK) in HepG2 human hepatoma cells. In this study, we showed that AMPK phosphorylation was stimulated by FG. These effects were abolished by pretreatment with an AMPK inhibitor, compound C. In addition, FG regulated the expression of genes associated with lipogenesis and lipolysis, thus causing suppression of hepatic triglyceride accumulation. In vivo study using db/db mice, FG reduced fasting plasma glucose, HbAlc, and insulin resistance index, when compared to diabetic control. FG also increased the phospho-AMPK and glucose transporter 4 (GLUT4) expressions in liver and skeletal muscle, respectively. In liver, expressions of lipogenic gene were decreased whereas expressions of lipolytic genes were induced, when compared to diabetic control. Taken together, we may suggest that FG ameliorates hyperglycemia and hyperlipidemia through activation of AMPK and could be developed as a health functional food or therapeutic agent for type 2 diabetic patients.

Therapeutic applications of ginseng for skeletal muscle-related disorder management

  • Syed Sayeed Ahmad;Hee Jin Chun;Khurshid Ahmad;Inho Choi
    • Journal of Ginseng Research
    • /
    • 제48권1호
    • /
    • pp.12-19
    • /
    • 2024
  • Skeletal muscle (SM) is the largest organ of the body and is largely responsible for the metabolism required to maintain body functions. Furthermore, the maintenance of SM is dependent on the activation of muscle satellite (stem) cells (MSCs) and the subsequent proliferation and fusion of differentiating myoblasts into mature myofibers (myogenesis). Natural compounds are being used as therapeutic options to promote SM regeneration during aging, muscle atrophy, sarcopenia, cachexia, or obesity. In particular, ginseng-derived compounds have been utilized in these contexts, though ginsenoside Rg1 is mostly used for SM mass management. These compounds primarily function by activating the Akt/mTOR signaling pathway, upregulating myogenin and MyoD to induce muscle hypertrophy, downregulating atrophic factors (atrogin1, muscle ring-finger protein-1, myostatin, and mitochondrial reactive oxygen species production), and suppressing the expressions of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in cachexia. Ginsenoside compounds are also used for obesity management, and their anti-obesity effects are attributed to peroxisome proliferator activated receptor gamma (PPARγ) inhibition, AMPK activation, glucose transporter type 4 (GLUT4) translocation, and increased phosphorylations of insulin resistance (IR), insulin receptor substrate-1 (IRS-1), and Akt. This review was undertaken to provide an overview of the use of ginseng-related compounds for the management of SM-related disorders.

닭의 고밀도사양 스트레스가 품종 간 체내대사 유전자 발현에 미치는 영향 (Effects of High Stocking Density on the Expression of Metabolic Related Genes in Two Strains of Chickens)

  • 손시환;장인석;안영숙;문양수
    • 한국가금학회지
    • /
    • 제42권1호
    • /
    • pp.51-59
    • /
    • 2015
  • 본 연구는 밀사에 의한 환경스트레스가 닭의 품종에 따라 스트레스 및 대사 연관 유전자들의 발현에 어떤 영향을 미치는지 알아보고자 실시하였다. 공시계는 한국재래닭과 백색레그혼으로 두 품종 모두 40주령 때 대조구($540cm^2$/수) 및 고밀도구($311cm^2$/수)로 분리하고, 50주령까지 10주간 사육하였다. 사양시험 종료 후, 각 개체의 간으로부터 total RNA를 추출하고, 스트레스, 소포체(ER) 스트레스 및 대사 연관유전자들의 발현을 real-time PCR을 이용하여 분석하였다. 한국재래계는 분석된 모든 스트레스 표지 유전자들의 발현이 밀사구와 대조구 사이에 유의적인 변화를 보이지 않았다. 그러나 백색레그혼의 경우, HSP70과 $HSP90{\alpha}$ 유전자의 발현이 유의적으로 높게 나타났다(P<0.05). 분석된 ATF6, GRP78, SREBP2 등의 발현은 품종 간 차이를 볼 수 없었지만, XBP1의 경우 백색레그혼이 한국재래계에 비하여 높은 발현을 보였다(P<0.05). 분석된 유전자들 중 FABP4, FATP1, ACSL1 등의 경우, 한국재래계에 비하여 백색레그혼에서 높은 유전자 발현을 보였다(P<0.05). GLUT의 발현은 품종 간에는 영향을 받지 않지만, 밀사에 의한 영향을 받고 있음을 보여주었다. 고밀도사양 체계는 닭의 품종과 관계없이 스트레스 요인이 될 수 있으며, 닭의 품종이나 개량의 정도에 따라 스트레스 반응에 대한 유전적 차이가 있음을 시사하고, 또한 밀사와 같은 환경적 스트레스는 간의 지방 및 포도당 대사에 영향을 미칠 수 있음을 보여주었다.

소의 조기임신진단 kit의 개발 1. Progesterone의 항체생산(抗體生産) 및 항(抗) BSA항체(抗體)의 제거 (A study on production of early pregnancy diagnostic kit in cattle 1. Production of polyclonal antibody to progesterone and removal of anti-bovine serum albumin antisera)

  • 강정부;이효종;최상용
    • 대한수의학회지
    • /
    • 제31권2호
    • /
    • pp.217-222
    • /
    • 1991
  • Most progesterone enzyme immunoassays(EIA) are used liquid phase double-antibody separation. These methods consume considerable time and reagents because of the requirements for several washing and centrifugation steps involving the reactants. Because of there several problems, we were prompted to develop an effective EIA system by the use of higher titer of progesterone antiserum free of anti-bovine serum albumin antibodies (anti-BSA). The results obtained were as follows. 1. The antibody of progesterone antiserum was high as $1.5{\times}10^5$. 2. Percent activity bound of progesterone antiserum was about 77 at a dilution to $5{\times}10^3$ times. 3. Progesterone antiserum was contained a large amount of anti-BSA antibodies. 4. The anti-BSA was completely absorbed by using of polymerised BSA. 5. The molecular weight of albumin polymer (polymerised BSA) obtained by using 2.5% glut. araldehyde was $5{\times}10^5$.

  • PDF

Sasa borealis extract exerts an antidiabetic effect via activation of the AMP-activated protein kinase

  • Nam, Jung Soo;Chung, Hee Jin;Jang, Min Kyung;Jung, In Ah;Park, Seong Ha;Cho, Su In;Jung, Myeong Ho
    • Nutrition Research and Practice
    • /
    • 제7권1호
    • /
    • pp.15-21
    • /
    • 2013
  • Leaf of Sasa borealis, a species of bamboo, has been reported to exhibit anti-hyperglycemic effect. However, its antidiabetic mechanism is not fully understood. In this study, we examined whether an extract of S. borealis activates AMP-activated protein kinase (AMPK) and exerts anti-hyperglycemic effects. Treatment with the S. borealis extract increased insulin signaling and phosphorylation of AMPK and stimulated the expression of its downstream targets, including $PPAR{\alpha}$, ACO, and CPT-1 in C2C12 cells and $PPAR{\alpha}$ in HepG2 cells. However, inhibition of AMPK activation attenuated insulin signaling and prevented the stimulation of AMPK target genes. The S. borealis extract increased glucose uptake in C2C12 cells and suppressed expression of the gluconeogenic gene, PEPCK in HepG2 cells. The extract significantly reduced blood glucose and triglyceride levels in STZ-induced diabetic mice. The extract enhanced AMPK phosphorylation and increased Glut-4 expression in the skeletal muscle of the mice. These findings demonstrated that the S. borealis extract exerts its anti-hyperglycemic effect through activation of AMPK and enhancement of insulin signaling.

Heat-Killed Lactiplantibacillus plantarum LRCC5314 Mitigates the Effects of Stress-Related Type 2 Diabetes in Mice via Gut Microbiome Modulation

  • Nam, YoHan;Yoon, Seokmin;Baek, Jihye;Kim, Jong-Hwa;Park, Miri;Hwang, KwangWoo;Kim, Wonyong
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권3호
    • /
    • pp.324-332
    • /
    • 2022
  • The incidence of stress-related type 2 diabetes (stress-T2D), which is aggravated by physiological stress, is increasing annually. The effects of Lactobacillus, a key component of probiotics, have been widely studied in diabetes; however, studies on the effects of postbiotics are still limited. Here, we aimed to examine the mechanism through which heat-killed Lactiplantibacillus plantarum LRCC5314 (HK-LRCC5314) alleviates stress-T2D in a cold-induced stress-T2D C57BL/6 mouse model. HK-LRCC5314 markedly decreased body weight gain, adipose tissue (neck, subcutaneous, and epididymal) weight, and fasting glucose levels. In the adipose tissue, mRNA expression levels of stress-T2D associated factors (NPY, Y2R, GLUT4, adiponectin, and leptin) and pro-inflammatory factors (TNF-α, IL-6, and CCL-2) were also altered. Furthermore, HK-LRCC5314 increased the abundance of Barnesiella, Alistipes, and butyrate-producing bacteria, including Akkermansia, in feces and decreased the abundance of Ruminococcus, Dorea, and Clostridium. Thus, these findings suggest that HK-LRCC5314 exerts protective effects against stress-T2D via gut microbiome modulation, suggesting its potential as a supplement for managing stress-T2D.

Effect of Solid-State Fermented Brown Rice Extracts on 3T3-L1 Adipocyte Differentiation

  • Su Bin Ji;Chae Hun Ra
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권7호
    • /
    • pp.926-933
    • /
    • 2023
  • Aspergillus oryzae KCCM 11372 was used to enhance the production of β-glucan using humidity control strategies. Under conditions of 60% humidity, solid-state fermentation (SSF) increased the yields of enzymes (amylase and protease), fungal biomass (ergosterol), and β-glucan. The maximum concentrations obtained were 14800.58 U/g at 72 h, 1068.14 U/g at 120 h, 1.42 mg/g at 72 h, and 12.0% (w/w) at 72 h, respectively. Moreover, the β-glucan containing fermented brown rice (β-glucan-FBR) extracts at concentrations of 25-300 ㎍/ml was considered noncytotoxic to 3T3-L1 preadipocytes. We then studied the inhibitory effects of the extracts on fat droplet formation in 3T3-L1 cells. As a result, 300 ㎍/ml of β-glucan-FBR extracts showed a high inhibition of 38.88% in lipid accumulation. Further, these extracts inhibited adipogenesis in the 3T3-L1 adipocytes by decreasing the expression of C/EBPα, PPARγ, aP2, and GLUT4 genes.

$PPAR_{\gamma}$ Ligand-binding Activity of Fragrin A Isolated from Mace (the Aril of Myristica fragrans Houtt.)

  • Lee, Jae-Young;Kim, Ba-Reum;Oh, Hyun-In;Shen, Lingai;Kim, Naeung-Bae;Hwang, Jae-Kwan
    • Food Science and Biotechnology
    • /
    • 제17권6호
    • /
    • pp.1146-1150
    • /
    • 2008
  • Peroxisome proliferator-activated receptor-gamma ($PPAR_{\gamma}$), a member of the nuclear receptor of ligand-activated transcription factors, plays a key role in lipid and glucose metabolism or adipocytes differentiation. A lignan compound was isolated from mace (the aril of Myristica fragrans Houtt.) as a $PPAR_{\gamma}$ ligand, which was identified as fragrin A or 2-(4-allyl-2,6-dimethoxyphenoxy)-1-(4-hydroxy-3-methoxyphenyl)-propane. To ascertain whether fragrin A has $PPAR_{\gamma}$ ligand-binding activity, it was performed that GAL-4/$PPAR_{\gamma}$ transactivation assay. $PPAR_{\gamma}$ ligand-binding activity of fragrin A increased 4.7, 6.6, and 7.3-fold at 3, 5, and $10{\mu}M$, respectively, when compared with a vehicle control. Fragrin A also enhanced adipocytes differentiation and increased the expression of $PPAR_{\gamma}$ target genes such as adipocytes fatty acid-binding protein (aP2), lipoprotein lipase (LPL), and phosphoenol pyruvate carboxykinase (PEPCK). Furthermore, it significantly increased the expression level of glucose transporter 4 (GLUT4). These results indicate that fragrin A can be developed as a $PPAR_{\gamma}$ agonist for the improvement of insulin resistance associated with type 2 diabetes.