• Title/Summary/Keyword: Glucose regulation

Search Result 361, Processing Time 0.026 seconds

The G115 standardized ginseng extract: an example for safety, efficacy, and quality of an herbal medicine

  • Bilia, Anna R.;Bergonzi, Maria C.
    • Journal of Ginseng Research
    • /
    • v.44 no.2
    • /
    • pp.179-193
    • /
    • 2020
  • Ginseng products on the market show high variability in their composition and overall quality. This becomes a challenge for both consumers and health-care professionals who are in search of high-quality, reliable ginseng products that have a proven safety and efficacy profile. The botanical extract standardization is of crucial importance in this context as it determines the reproducibility of the quality of the product that is essential for the evaluation of effectiveness and safety. This review focuses on the well-characterized and standardized ginseng extract, G115, which represents an excellent example of an herbal drug preparation with constant safety and efficacy within the herbal medicinal products. Over the many decades, extensive preclinical and clinical research has been conducted to evaluate the efficacy and safety of G115. In vitro and in vivo studies of G115 have shown pharmacological effects on physical performance, cognitive function, metabolism, and the immune system. Furthermore, a significant number of G115 clinical studies, most of them double-blind placebo-controlled, have reinforced the findings of preclinical evidence and proved the efficacy of this extract on blood glucose and lipid regulation, chronic obstructive pulmonary disease, energy, physical performance, and immune and cognitive functions. Clinical trials and 50 years of presence on the market are proof of a good safety profile of G115.

Roles of Epinephrine and Insulin in the Regulation of Metabolism in Dairy Cow (젖소에서 epinephrine 및 insulin에 의한 대사 조절)

  • Kim, Jin-Wook
    • Journal of agriculture & life science
    • /
    • v.43 no.4
    • /
    • pp.15-20
    • /
    • 2009
  • The transition from pregnancy to lactation, commonly referred to as the "transition period" is characterized by dramatic changes in metabolic processes and their regulation in order to prepare the dairy cow for parturition and lactogenesis. An important adaptation to lactation is the increase in gluconeogenesis by the liver to meet the tremendous increase in demand of glucose for lactose synthesis, and the accumulation of lipid in adipose tissue during pregnancy, its mobilization that begins prior to lactation and the dramatic increase in plasma NEFA concentration early lactation. Epinephrine and insulin, the homeostatic regulators of metabolism are responsible for the adaptations of lipid and carbohydrate metabolism in support of milk production along with mobilization of body fat to meet overall energy demands because dry matter intake is insufficient to meet these demands during early lactation.

Antidiabetic Effect of Beta vulgaris Mixture: Regulation of Glycolytic Enzymes and Pancreatic Beta Cells

  • Dae Sik Haam;Dong-Yeop Shin;Hak Yong Lee;Young Mi Park;Byeong-Soo Kim;Myung-Sunny Kim;Hye Jeong Yang;Na-Rae Shin
    • Journal of Food and Nutrition Research
    • /
    • v.10 no.1
    • /
    • pp.32-40
    • /
    • 2022
  • Diabetes is a chronic metabolic disease with a high prevalence worldwide. Beet (Beta vulgaris) is a plant that is widely used in many countries and has various biological activities. In this study, we aimed to evaluate the antidiabetic effect of a B. vulgaris mixture (BM). In the in vitro evaluation, we measured the inhibitory activities of α-amylase and α-glucosidase, performed the oral starch tolerance test (OATT) and oral sucrose tolerance test (OSTT) in Sprague Dawley (SD) rats, and evaluated the clinical symptoms, oral glucose tolerance test (OGTT), number of blood cells, and insulin resistance in db/db mice. BM showed an inhibitory effect against α-amylase and α-glucosidase activity and decreased the blood glucose increased in the OATT and OSTT. In the diabetes mouse model, BM alleviated the general symptoms of diabetes and OGTT results showed a decrease in the increased blood sugar level. Regarding diabetes-related tissue weight, BM decreased the reduced pancreatic weight and showed an effect on diabetes-related factors of blood. Histological analysis indicated that BM decreased insulin concentration, insulin resistance, and insulin secretion ability in serum, and increased insulin concentration in the islets of Langerhans. These results demonstrate that BM has an antidiabetic effect through the regulation of glycolytic enzymes and β cell activity in the pancreas.

Effect of Cholera Toxin Administered Supraspinally or Spinally on the Blood Glucose Level in Pain and D-Glucose Fed Animal Models

  • Sim, Yun-Beom;Park, Soo-Hyun;Kang, Yu-Jung;Kim, Sung-Su;Kim, Chea-Ha;Kim, Su-Jin;Jung, Jun-Sub;Ryu, Ohk-Hyun;Choi, Moon-Gi;Choi, Seong-Soo;Suh, Hong-Won
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.2
    • /
    • pp.163-167
    • /
    • 2013
  • In the present study, the effect of intrathecal (i.t.) or intracerebroventricular (i.c.v.) administration with cholera toxin (CTX) on the blood glucose level was examined in ICR mice. The i.t. treatment with CTX alone for 24 h dose-dependently increased the blood glucose level. However, i.c.v. treatment with CTX for 24 h did not affect the blood glucose level. When mice were orally fed with D-glucose (2 g/kg), the blood glucose level reached to a maximum level at 30 min and almost returned to the control level at 120 min after D-glucose feeding. I.c.v. pretreatment with CTX increased the blood glucose level in a potentiative manner, whereas i.t. pretreatment with CTX increased the blood glucose level in an additive manner in a D-glucose fed group. In addition, the blood glucose level was increased in formalin-induced pain animal model. I.c.v. pretreatment with CTX enhanced the blood glucose level in a potentiative manner in formalin-induced pain animal model. On the other hand, i.t. pretreatment with CTX increased the blood glucose level in an additive manner in formalin-induced pain animal model. Our results suggest that CTX administered supraspinally or spinally differentially modulates the regulation of the blood glucose level in D-glucose fed model as well as in formalin-induced pain model.

The Effects of Chungkukjang Powder Supplements on the Regulation of Blood Glucose and Inflammation in Diabetic Rats (청국장 분말 첨가식이가 당뇨 쥐의 혈당과 염증조절에 미치는 영향)

  • Yang, Kyung-Mi
    • Korean journal of food and cookery science
    • /
    • v.31 no.2
    • /
    • pp.118-127
    • /
    • 2015
  • In this study, the effect of Cheonggukjang powder were investigated on the regulation of blood glucose and inflammatory in STZ-induced diabetic rats. The experimental diet used this study were three kinds of Cheonggukjang, which were soybean Cheonggukjang, Yakkong Cheonggukjang and black foods such as black rice, black sesame seeds, and sea tangle added Yakkong Cheonggukjang powder. The experimental animals were divided into 5 groups and fed experimental diets for 7 weeks; non-diabetes with normal diet group (C), diabetes with normal diet (DC), diabetes with soybean Cheonggukjang (DS), diabetes with Yakkong Cheonggukjang (DY), and diabetes with Yakkong black foods added Cheonggukjang (DYB). Blood glucose and insulin resistance of STZ-induced diabetic groups were were significantly higher than C group. But insulin levels and insulin secertory of STZ-induced diabetic groups were significantly lower than C group. However, supplementation of Yakkong or black foods added Yakkong Cheonggukjang were proven to regulation them. In diabetic group, free fatty acid level was significantly increased than C group, but this contents was significantly decreased supplementation of soybean Cheonggukjang. Leptin and adiponectin levels were significantly decreased in STZ-induced diabetic groups.

Anti-Obesity Effects and the Regulation of Energy Metabolism in Skeletal Muscle Tissues of Allii Fistulosi Bulbus Extract in High Fat Diet-Induced Obesity Mice (총백추출물의 고지방식이 유도 비만 마우스에서의 항비만 효과 및 근육조직에서의 에너지대사 조절기전 연구)

  • Yoon Yong Choi;Hyeon Soo Lee;Su Yeon Baik;Sumin Lim;Hyo Won Jung;Seok Yong Kang;Yong-Ki Park
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.22 no.2
    • /
    • pp.102-114
    • /
    • 2022
  • Objectives: We investigated the effects of Allii Fistulosi Bulbus (AFB) on high fat diet (HFD)-induced obesity in mice and the regulation of energy metabolism in muscle tissues of mice. Methods: The C57BL/6 mice (6 weeks, male) were fed a HFD for 8 weeks and then administrated with AFB extract at 500 mg/kg (p.o.) once daily for 4 weeks. The body weight (BW), muscle weight, calorie intake, fasting blood glucose (FBG) and serum glucose, insulin, and low-density lipoprotein-cholesterol (LDL-C) levels were measured in mice. It was also observed the histological changes of pancreas, liver, and fat tissues with hematoxylin and eosin staining. It was investigated the phosphorylation of insulin receptor substrate 1 (IRS-1), Ser/Thr kinase (AKT), and adenosine monophosphate-activated protein kinase (AMPK), and the expression of phosphoinositide 3-kinase, glucose transporter type 4 (GLUT4), and sirtuin1 (Sirt1) in gastrocnemius tissues by western blot, respectively. Results: The increases of BWs, calorie intakes and FBG levels in obesity mice were decreased significantly by the administration of AFB extract. The AFB extract administration was reduced significantly serum levels of glucose, insulin, and LDL-C in obesity mice. The AFB extract inhibited lipid accumulation in liver tissues, hyperplasia of pancreatic islets, and enlargement of fat tissues in obesity mice. The phosphorylation of IRS-1 and AKT was increased significantly in muscle tissues and AMPK phosphorylation and the GLUT4 and Sirt1 expression were decreased significantly in muscle tissues after the AFB administration. Conclusions: Our study indicates that AFB extract improves symptoms of obesity through regulation of energy regulating proteins in muscle tissues.

Influences of Chitosan, Sericin and Collagen Extract Complexes on the Improvement Actions of Lipid Component in Diabetes (키토산과 세리신 및 콜라겐 추출 혼합물이 당뇨의 혈당 및 지질성분 개선효과)

  • Kim, Han-Soo;Jang, Seong-Ho;Yoon, Myung-Joo;Choi, Woo-Seok;Kang, Jin-Soon
    • Journal of Environmental Science International
    • /
    • v.20 no.8
    • /
    • pp.1031-1039
    • /
    • 2011
  • This study was conducted to examine the influences of chitosan, sericin and collagen extract complexes (1:1:1, w/w/w, CSC-F-005) in blood glucose and lipid concentrations in the sera of streptozotocin (STZ, 55 mg/kg BW, IP injection)-induced diabetic rats (SD strain) fed on experimental diets for 5 weeks. The concentrations of blood glucose, total cholesterol, HDL-cholesterol, ratio of HDL-cholesterol concentration to total cholesterol, atherosclerotic index, LDL-cholesterol, free cholesterol, cholesteryl ester, triglyceride (TG) and phospholipid (PL) in serum were effective on the metabolic regulation in diabetic rats. The activities of alkaline phosphatase (ALP) and aminotransferase (AST, ALT) in serum were lower in the extract complexes (CSC-F-005) than in the diabetic rats. The results shown above suggested that CSC-F-005 extract complexes supplementation effectively improvement of blood glucose and lipid components in the serum of STZ-induced diabetic rats.

Protein phosphorylation on tyrosine restores expression and glycosylation of cyclooxygenase-2 by 2-deoxy-D-glucose-caused endoplasmic reticulum stress in rabbit articular chondrocyte

  • Yu, Seon-Mi;Kim, Song-Ja
    • BMB Reports
    • /
    • v.45 no.5
    • /
    • pp.317-322
    • /
    • 2012
  • 2-deoxy-D-glucose(2DG)-caused endoplasmic reticulum (ER) stress inhibits protein phosphorylation at tyrosine residues. However, the accurate regulatory mechanisms, which determine the inflammatory response of chondrocytes to ER stress via protein tyrosine phosphorylation, have not been systematically evaluated. Thus, in this study, we examined whether protein phosphorylation at tyrosine residues can modulate the expression and glycosylation of COX-2, which is reduced by 2DG-induced ER stress. We observed that protein tyrosine phosphatase (PTP) inhibitors, sodium orthovanadate (SOV), and phenylarsine oxide (PAO) significantly decreased expression of ER stress inducible proteins, glucose-regulated protein 94 (GRP94), and CCAAT/ enhancer-binding-protein- related gene (GADD153), which was induced by 2DG. In addition, we demonstrated that SOV and PAO noticeably restored the expression and glycosylation of COX-2 after treatment with 2DG. These results suggest that protein phosphorylation of tyrosine residues plays an important role in the regulation of expression and glycosylation during 2DG-induced ER stress in rabbit articular chondrocytes.

Gelidium elegans Extract Ameliorates Type 2 Diabetes via Regulation of MAPK and PI3K/Akt Signaling

  • Jia Choi;Kui-Jin Kim;Eun-Jeong Koh;Boo-Yong Lee
    • Journal of Web Engineering
    • /
    • v.10 no.1
    • /
    • pp.51-64
    • /
    • 2018
  • Gelidium elegans, a red alga native to the Asia Pacific region, contains biologically active polyphenols. We conducted a molecular biological study of the anti-diabetic effect of Gelidium elegans extract (GEE) in C57BL/KsJ-db/db mice. Mice that had been administered GEE had significantly lower body mass, water consumption, and fasting blood glucose than db/db controls. Moreover, hemoglobin A1c (HbA1c), an indicator of the glycemic status of people with diabetes, was significantly lower in mice that had been administered GEE. We also found that 200 mg/kg/day GEE upregulates the insulin signaling pathway by activating insulin receptor substrate-1 (IRS-1) and phosphoinositide 3-kinase (PI3K), and increasing the expression of glucose transporter type 4 (GLUT4). In parallel, mitogen-activated protein kinase (MAPK) activity was lower in GEE-treated groups. In summary, these findings indicate that GEE regulates glucose metabolism by activating the insulin signaling pathway and downregulating the MAPK signaling pathway.

Effects of Gamiolnyeo-jeon on Lipid Metabolism and Blood Glucose Level in db/db Mice (가미옥녀전(加味玉女煎)이 db/db 마우스 당뇨(糖尿)모델에서 지질대사(脂質代謝)와 항당뇨(抗糖尿) 효능(效能)에 미치는 영향(影響))

  • Sim, Boo-Yong;Kim, Dong-Hee
    • The Korea Journal of Herbology
    • /
    • v.31 no.2
    • /
    • pp.39-45
    • /
    • 2016
  • Objectives : Abnormal regulation of glucose and impaired lipid metabolism that result from a defective or deficient insulin are the key etiological factor in type 2 diabetes mellitus. The our study investigated the effects of Gamioknyeo-jeon (GO) on blood glucose and lipid metabolism improved by it in db/db mice (a murine model of type 2 diabetes mellitus).Methods : The animals were divided into 3 groups: Normal groups were not-treated C57BL/6 mice; Control groups were treated orally with DW in db/db mice; GO groups were treated orally with GO (200 ㎎/㎏/day) in db/db mice. After mice were treated with GO for 5 weeks, we measured AST, ALT, creatinine, BUN, body weight, food intake, blood glucose, insulin and lipid levels (total cholesterol, HDL cholesterol, and LDL cholesterol and atherogenic index(AI) and cardiac risk factor(CRF).Results : Serum AST, ALT, creatinine, BUN levels were not changed by GO do not show any toxic effects. GO groups were decreased in body weight, food intake and blood glucose level among compared to Control groups. Also, GO groups were found to have atherogenic Index and cardiac risk factor as well as lipid metabolism improvement (total cholesterol and LDL cholesterol decrease). Finally, GO groups were increased the insulin compared to Normal and control groups.Conclusions : We suggest that GO may have the control effects of diabetes mellitus by improving blood glucose control and lipid metabolism.