• Title/Summary/Keyword: Glomus sp.

Search Result 21, Processing Time 0.032 seconds

Effects of Inoculation with Mycorrhizal Fungi, Pisolithus tinctorius and Glomus sp. on the Rooting of Quercus acutissima Carr. Cuttings at Various Ortet Ages (모래밭 버섯균(菌)과 Glomus 균근균(菌根菌)의 인공접종(人工接種)이 연령(年齡)이 다른 상수리나무에서 채취(採取)한 삽수(揷穗)의 삽목발근(揷木發根)에 미치는 영향(影響))

  • Kim, Jong Ju;Lee, Kyung Joon
    • Journal of Korean Society of Forest Science
    • /
    • v.79 no.3
    • /
    • pp.302-308
    • /
    • 1990
  • This study was conducted to determine the effects of mycorrhizal inoculation and ortet ages on the rooting of Quercus acutissima cuttings. The cuttings taken from 12-week-, 2-year-, 4-year-, and 20-year-old plants were rooted in mid summer in the rooting medium (vermiculite 2 : peatmoss 1 by volume) with or without Pisolithus tinctorius (Pt) and Glomus sp. inocula and IBA under intermittent misting system in an open shed. The average percentages of rooting were about 82%, 49%, 29%, and 13% for cuttings taken from 12-week-, 2-year-. 4-year-, and 20-year-old seedlings, respectively. Pt inoculation, enhanced rooting of cuttings at all age classes, except 12-week-old seedlings, with the highest enhancement(22%) observed in cuttings taken from 20-year-old trees. The highest percentage of rooting in each age group eras 88.9% in 12-week-old seedlings treated with Pt plus 3.000ppm IBA, 75% in 2-Year-old plants with 1,000ppm IBA, 58.3% in 4-year-old plants with 3.000ppm IBA and 22% in 20-year-old plants. The addition of Glomus sp. fungus inoculum failed to enhance rooting. Pt mycorrhizal inoculation enhanced root dry weight, length, and diamter of adventitious roots at cuttings taken from 12-week- and 20-year-old trees, except the cuttings taken from 4-year-old seedlings. Rooted cuttings had more total nitrogen content in the leaves than unrooted cuttings, and the greater rooting response was associated with the higher phosphorus content in the leaves.

  • PDF

Distribution of Arbuscular Mycorrhizal Fungi in the Soil grown Tomato Plants under Greenhouse (시설재배 토마토 토양에서 Arbuscular 균근균의 분포)

  • Cho Ja-Yong;Kim Jin-Seop;Yang Seung-Yul
    • Korean Journal of Organic Agriculture
    • /
    • v.14 no.2
    • /
    • pp.219-228
    • /
    • 2006
  • This study was conducted to examine the distribution of arbuscular mycorrhizal fungi (AMF) in the soil grown tomato plants in Damyang districts. We collected twenty one soil samples from the rhizosphere of tomato plants which were grown under structure. Number of spores/g in the soil sized over $500{\mu}m,\;355{\sim}500{\mu}m,\;251{\sim}354{\mu}m,\;107{\sim}250{\mu}m\;and\;45{\sim}106{\mu}m$ were 0.01, 0.02, 0.09, 0.9, and 2.0. Total number of spores/g in the fresh soil were 3.02. Mycorrhizal root infection by vesicles, hyphae and arbuscules were 18.0%, 6.0% and 2.0%. To identify the genus of arbuscular mycorrhizal fungi, isolated mycorrhizal spores from the soil grown tomato plants were inoculated into the host plant of sudangrass and mass propagated for 4 months. As a result of identification, mycorrhizal spores were identified as Glomus sp., Gigaspora sp. and Acaulospora sp.

  • PDF

Identification of a V.A.Mycorrhiza in the Cultured Panax ginseng (재배 인삼에서 V. A. Mycorrhiza의 동정)

  • Park, Hoon;Lee, Myong-Gu;Lee, Chong-Hwa;Lee, Kyung-Joon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.23 no.1
    • /
    • pp.73-76
    • /
    • 1990
  • A search for presence of Versicular-Arbuscular endomycorrhiza was attempted using 6-year-old Panax ginseng roots. Hyphae without septum, and vesicles were observed in the cortex of fine roots of Panax ginseng. Brown chlamydospores with thick wall were found in the soil of root zone and it is classified as Glomus sp.

  • PDF

Distribution of Arbuscular Mycorrhizal Fungi in the Rhizosphere of Cirsium japonicum DC. for Wild Vegetables (나물용 엉겅퀴의 근권에서 Arbuscular 균근균의 분포)

  • Cho, Ja-Yong;Heo, Buk-Gu;Yang, Seung-Yul
    • Korean Journal of Organic Agriculture
    • /
    • v.13 no.2
    • /
    • pp.197-209
    • /
    • 2005
  • of Hangalku per plant sold for wild vegetables were 9.1g and 0.9g, and number of leaves was 10.8. Root fresh and dry weights of Hangalku per plant were 19.2g and 4.1g. Thirty five soil samples were collected from the native soils grown Cirsium japonicum DC., and mycorrhizal spores in soils were separated using wet-sieving methods. Number of mycorrhizal spores per 30g fresh soil sized over 500${\mu}$m, 355~500${\mu}$m, 251~354${\mu}$m, 107~250${\mu}$m and 45~106${\mu}$m were 0.6, 2.1, 6.0, 55.3 and 126, etc. Total number of mycorrhizal spores per 30g fresh soil were 190. Root infection by vesicles, hyphae and arbuscules were 13%, 4% and 3%, respectively. As a result of identification, mass propagated mycorrhizal spores by the host plant of Sudangrass were Glomus sp., Gigaspora sp., and Acaulospora sp., and so on.

  • PDF

Distribution of Arbuscular Mycorrhizal Fungi in Greenhouse Strawberry Plants (딸기 시설재배에서 Arbuscular 균근균의 분포)

  • Cho, Ja-Yong;Heo, Buk-Gu;Yang, Seung-Yul
    • Korean Journal of Organic Agriculture
    • /
    • v.13 no.2
    • /
    • pp.175-184
    • /
    • 2005
  • This study was conducted to investigate into the distribution of arbuscular mycorrhizal fungi (AMF) in the greenhouse soils grown strawberry plants in Damyang and Jangheung districts. Twenty three soil samples were collected from strawberry plants under greenhouse conditions, and mycorrhizal spores in soils were separated using wet-sieving methods. Number of mycorrhizal spores per 30g fresh soil sized over 500${\mu}$m, 355~500${\mu}$m, 251~354${\mu}$m, 107~250${\mu}$m and $45{\sim}106{\mu}m$ were 0.3, 1.0, 4.2, 50.4 and 119, etc. Total number of spores per 30g fresh soil were l73.9. Root infection by vesicles and hyphae were 25% and 4%, respectively. Mycorrhizal root infection by arbuscules was not shown in strawberry roots. Isolated mycorrhizal spores were inoculated into the host plant of sudangrass to identify the genus of arbuscular mycorrhizal fungi, and propagated for 4 months. As a result of identification, mass propagated mycorrhizal spores were Glomus sp., Gigaspora sp., and Acaulospora sp., and so on.

  • PDF

Effect of Organic Farming on Spore Diversity of Arbuscular Mycorrhizal Fungi and Glomalin in Soil

  • Lee, Ji-Eun;Eom, Ahn-Heum
    • Mycobiology
    • /
    • v.37 no.4
    • /
    • pp.272-276
    • /
    • 2009
  • In this study, eight soil samples were collected from organic and conventional farms in a central area of South Korea. Spore communities of arbuscular mycorrhizal fungi (AMF) and glomalin, a glycoprotein produced by AMF, were analyzed. Spores of Glomus clarum, G. etunicatum, G. mosseae, G. sp., Acaulospora longula, A. spinosa, Gigaspora margarita, and Paraglomus occultum were identified at the study sites, based on morphological and molecular characteristics. While Acaulospora longula was the most dominant species in soils at organic farms, Paraglomus occultum was the most dominant species in soils at conventional farms. Species diversity and species number in AMF communities found in soils from organic farms were significantly higher than in soils from conventional farms. Glomalin was also extracted from soil samples collected at organic and conventional farms and was analyzed using both Bradford and enzyme-linked immunosorbent assays. The glomalin content in soils from organic farms was significantly higher than in soils from conventional farms. These results indicate that agricultural practices significantly affect AMF abundance and community structure.

Effects of Endomycorrhizal Glomus Inoculation on Drought Resistance and Physiological Changes of Lespedeza cyrtobotrya Seedlings Exposed to Water Stress (Glomus 내생균근균(內生菌根菌) 접종(接種)이 수분(水分) 스트레스에 노출(露出)된 참싸리의 건조저항성(乾燥抵抗性) 및 생리적(生理的) 변화(變化)에 미치는 영향(影響))

  • Kim, Hyo-Jin;Lee, Kyung-Joon;Han, Sim-Hee
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.5 no.2
    • /
    • pp.53-62
    • /
    • 2002
  • The objectives of this study were to understand the tolerance mechanism of woody plants to water stress and tolerance changes in relation to mycorrhizal formation. Lespedeza cyrtobotrya Miq. commonly used for erosion control in slopes were raised from seeds and transplanted to 120 plastic pots. Sixty pots received the top soil of a Fraxinus americana forest, while remaining 60 pots received the autoclaved top soil. The forest soil contained 1,200 spores per 100g of arbuscular endomycorrhizal fungus, mostly Glomus sp. The plants were raised outside with regular supply of water and mineral nutrients. Two kinds of water deficit treatment and a control were started at the middle of July : cyclic water deficit treatment with 3 cycles of sequential water stress at the point of xylem water potential of about -0.6, -0.6, and -1.7 MPa and recovery, and non-cyclic water deficit treatment with single water stress at about -1.5 MPa. The non-stressed plants received plenty of water throughout the period. In late August the plants were harvested for measurements of dry weight, N, P, carbohydrate contents, net photosynthesis and superoxide dismutase(SOD) activities. Both cyclic and non-cyclic water deficit treatments reduced dry weight by 60% and 40%, respectively, and reduced nitrogen absorption, while increased SOD activities. Water-stressed plants also showed increased carbohydrate contents in the leaves and lowered stomatal conductance. Mycorrhizal inoculation resulted in an average of 40% infection of roots and 2-3 times increase in P absorption in water-stressed as well as non-stressed plants. Mycorrhizal formation also increased shoot-root ratio. The results that SOD activities of water-stressed plants with mycorrhizal infection were significantly lower than those of non-mycorrhizal plants suggest the possibility of improvement of water-stressed condition by mycorrhizal formation. It was concluded that endomycorrhizal formation increased tolerance of Lespedeza cyrtobotrya seedlings to water stress.

Effects of Nutrient Solution Strength and Arbuscular Mycorrhizal Fungi on Growth and Flowering of Potted Miniature Rose in Ebb and Flow System (저면관수 시스템에서 배양액 농도와 Arbuscular 균근균 처리가 분식 미니 장미의 생육 및 개화에 미치는 영향)

  • 이범선;이인호;지성희;손보균;조자용;강종구
    • Journal of Bio-Environment Control
    • /
    • v.13 no.2
    • /
    • pp.112-119
    • /
    • 2004
  • Objective of this research was to evaluate the effects of nutrient solution strength and Arbuscular Mycorrhizal Fungi (AMF, Glomus sp.) on growth and flowering of potted miniature rose (Rosa hybrids L. cv 'Scarlet'). To achieve this, plants cultured with six different strength of Japanese Horticultural Experiment Station solution (0.125, 0.25, 0.5, 1.0, 2.0, and $4.0\;{\times}\;{full}$ strength) and inoculated with AMP at cutting and transplanting. Leachate EC increased as solution strength were elevated. The leachate EC were not different between non-inoculated plants and AMF treatment at cutting, but significantly decreased when plants were inoculated with AMF at transplanting. The elevated strength of nutrient solution resulted in decrease of leachate pH. When plants were inoculated AMF at transplanting, leachate pH was lower than those of non-inoculated plants and inoculated with AMF at cutting. At harvesting (93 days after transplanting), plant height, leaf width, number of branches and shoot fresh and dry weight of rose 'Scarlet' increased with elevated nutrient solution strength. AMF treatment at transplanting of potted rose 'Scarlet' showed the best results in growth such as chlorophyll content, number of flowers, and shortening the days required to flower. The content of N, P, K, and Mn in leaf tissue of potted rose increased by elevated nutrient solution strength and AMF treatment, while the tissue Na contents decreased by an AMF treatment.

Effects of Arbuscular Mycorrhizae on Growth and Mineral Nutrient Contents in Trifoliate Orange Seedling (Arbuscular Mycorrhizae가 탱자 유묘의 생육과 무기양분 함량에 미치는 영향)

  • Oh, Hyun-Woo;Kim, Sang-Youb;Han, Hae-Ryong;Moon, Doo-Khil;Chung, Jong-Bae
    • Korean Journal of Environmental Agriculture
    • /
    • v.17 no.2
    • /
    • pp.182-188
    • /
    • 1998
  • The effect of arbuscular mycorrhizae(AM) on the growth of trifoliate orange seeding were investigated in volcanic ash soil. Trifoliate orange is used as a root stock of citrus in Cheju island. Seedings innoculated with AM fungi were grown for 16 weeks in pots of various levels of fertilizer. Growth characteristics and mineral nutrient contents were measured and spores of AM fungi colonized were identified. Seventy % of the replicsted pots of seedings were colonized by AM in the treatment of high level fertilizer and additional phosphate (40g of 21-17-17 complex fertilizer and 50g of fused phosphate added to 50L of soil). In treatments of low levels fertilizer or without fused phosphate addition, the pots colonized were less than 20 %. Colonization of trifoliate seedings with AM fungi greatly increased the growth of seedings. Shoot length and weight of shoot and root positively regressed on AM colonization ratio. AM colonization caused higher concentrations of P, Cu and Mg in plant, and the relations were significant at 5 % level. Contents of N and Zn in plants also tended to increase, while that of Ca to decrease, with increasing colonization ratio. Four species of AM fungi - Glomus deserticola, G. rubiforme, G. vesiculiferum and Acaulospora sp, - were found in the soil where roots of trifoliate orange as an innoculation materials were collected. All of the 4 species were found in the inoculated pot soils after the seedling growth, indicating that these species can be colonized in trifoliate orange roots.

  • PDF

Studies on the Indigenous Vesicular-Arbuscular Mycorrhizal Fungi(VAMF) in Horticultural Crops Grown Under Greenhouse -I. Spore Density and Root Colonization of the Indigenous VAMF in Soil of Some Horticultural Crops (시설원예(施設園藝) 작물(作物)에서 토착(土着) VA균근균(菌根菌)에 관한 연구(硏究) -I. 감염양상(感染樣相)과 밀도(密度))

  • Sohn, Bo-Kyoon;Huh, Sang-Man;Kim, Kwang-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.24 no.3
    • /
    • pp.225-233
    • /
    • 1991
  • This study was conducted to evaluate the potential of indigenous vesicular-arbuscular mycorrhizal fungi(VAMF) in the rhizosphere soil of horticultural crops grown under greenhouse and open-field condition, in the southern area of Kores. Soil samples collected from the rhizosphere of some sellected horticultural crops, such as cucumber, hot pepper, lettuca, tomato and eggplant grown under greenhouse or open-field condition. All tested crops are considered as mycorrhizal plants. The infection rate of horticultural crops investigated ranged from 38% to 70%, hot pepper and eggplant grown under greenhouse condition showed the highest infection being 66.0% and 70.0%, respectively. Spore densities were from 4.8 to 20.0g-1 on dried soil basis. Spore densities of VAMF in the rhizosphere soils under greenhouse condition were higher than that of open-field conditions. The highest distribution of spores in diameter ranged from $75{\mu}m$ to $106{\mu}m$ in the rhizosphere soil of lettuce, cucumber and tomato while those in hot pepper and eggplant ranged from $75{\mu}m$ to $250{\mu}m$. Glomus sp.-type spores predominated in the slightly acid soil(pH 6.3), while Acaulospora sp.-type spores greatly predominated in the very strongly acid field(pH 4.9).

  • PDF