• Title/Summary/Keyword: Glomerella cingulata

Search Result 51, Processing Time 0.027 seconds

Occurrence of Colletotrichum Stem Rot Caused by Glomerella cingulata on Graft-Cactus in Korea

  • Kim, Young-Ho;Jun, Ok-Kyoung;Sung, Mi-Joo;Shin, Jun-Sung;Kim, Jung-Ho;Jeong, Myoung-Il
    • The Plant Pathology Journal
    • /
    • v.16 no.4
    • /
    • pp.242-245
    • /
    • 2000
  • In 1999 and 2000, a rot of graft-cacti including Hylocereus trigonus (three-angled cactus), Gymnocalycium mihanovichii, and Chamaecereus silvestrii occurred in several greenhouses in major cactus-growing areas of Korea. Typical symptoms included a moist, light brown rot or a watery rot of the stems. A Colletotrichum sp. was isolated from the lesions. The fungus formed dark gray, dense or floccose colonies on potato dextrose agar, frequently forming many light pink acervuli often surrounded with setae. The hyaline, cylindrical conidia were one-celled with round ends. Appressoria were mostly semicircular or clavate. Thin-walled asci contained eight, one-celled, hyaline ascospores (biseriate in ascus). Ascopspores were strainht or curved, ellipsoidal or subcylindrical. Based on these characteristics, the fungus was identified as Glomerlla cingulata (anamorph : C. gloeosporioides). Wound inoculation of basal stems of the cactus by the mycelial plugs or conidia produced symptoms identical to those described above. Various cactus species were compared in susceptibility using stem disc inoculation. Cereus tetragonus, Eriocereus jusbertii, Myrtillocactus geomentrizans, and three-angled cacti from Mexico and Taiwan were susceptible, but C. peruvianus (Peruvian apple cactus) and Harrisia tortuosa not. This is the first report of G. cingulata causing stem rot of graft-cactus in Korea.

  • PDF

Incidences of Leaf Spots and Blights on Kiwifruit in Korea

  • Jeong, In-Ho;Lim, Myoung-Taek;Kim, Gyung-Hee;Han, Tae-Woong;Kim, Hong-Chul;Kim, Min-Ji;Park, Hyun-Su;Shin, Soon-Ho;Hur, Jae-Seoun;Shin, Jong-Sup;Koh, Young-Jin
    • The Plant Pathology Journal
    • /
    • v.24 no.2
    • /
    • pp.125-130
    • /
    • 2008
  • Various kinds of leaf spots and blights were found in kiwifruit (Actinidia deliciosa) orchards on 2006 in Korea. Disease incidences were quite variable between open-field and rain-proof shelter. Rate of diseased leaves was recorded as about 70% at open-field orchards in late season but use of rain-proof vinyl shelters alleviated the disease incidences by 20%. Angular leaf spots appeared at early infection stage on June and several other symptoms were also recognized as the disease developed afterward. On September, brown leaf blights were the most frequent, followed by grayish brown ring spots, silvering gray leaf blights, zonate leaf blights, dark brown ring spots and angular leaf spots at open-field orchards. Four fungal species were frequently isolated from the disease symptoms. Phomopsis sp. was the most predominant fungus associated with the leaf spot and blight symptoms on kiwifruit, followed by Glomerella cingulata, Alternaria alternata and Pestalo-tiopsis sp. Phomopsis sp. was commonly isolated from angular leaf spots, silvering gray leaf blights, and zonate brown leaf blights. G. cingulata, A. alternata and Pestalotiopsis sp. were isolated from grayish brown ring spots (anthracnose), brown ring spots and zonate dark brown leaf blights. Typical symptoms appeared on the wounded and unwounded leaves, which were inoculated by each of Phomopsis sp., G. cingulata, and Pestalotiopsis sp., but A. alternata caused symptoms only on the wounded leaves.

Isolation and Identification of Antagonistic Microorganisms for Biological Control to Major Diseases of Apple Tree(Malus domestica Borkh) (사과 주요 병해 방제를 위한 길항미생물 분리 및 동정)

  • 박흥섭;조정일
    • Korean Journal of Organic Agriculture
    • /
    • v.5 no.1
    • /
    • pp.137-147
    • /
    • 1996
  • For the purpose of acquiring microbial agents that can be utilized to biologically control the major airborne diseases to apple trees, such as canker(Botryosphaeria dothidea), bitter rot(Glomerella cingulata), alternaria leaf spot(Alternaria mali), root rot(rosellinia necatrix), canker(Valsa ceratosperma) and gray mold rot(Botrytis cinerea), the effective microorgaisms were isolated, tested for antagonistic activity to the pathogens causing major diseases to apple trees and identifed. Screening of more than 5,000 species of microorganisms collected in nature for them antagonistic action to the pathogens causing 5 major diseases to apple trees resulted in selection of effective species. Out of the 11 species, one species designated as CAP134 demonstrated outstanding activity. The bacterial strain, CAP134 exerted antagonistic efficiency of 57% on an isolated strain and 40% on a donated strain of Botryosphaeria dothidea., 52% on an isolated strain and 46% on a purchased strain of Alternaria mali, 60% on Valsa ceratosperma 25% on Glomerella cingulata, and 64% Rosellinia necatrix. The CAP134 was identified as a bacterial strain to Bacillus subtilis ATCC 6633 based on morephology, culture conditions, and physio-biochemical characteristics.

  • PDF

A study on the Overwintering of Glomerella cingulata on Apple and its Ascigerous Stage in Korea (한국에서의 사과 탄저병균의 월동 및 자낭세대의 검출)

  • Kim Moon Ho
    • Korean journal of applied entomology
    • /
    • v.10 no.1
    • /
    • pp.39-41
    • /
    • 1971
  • Apple bitter rot caused by Glomerella cingulata has been known to occur annually on the fruits of previously infected twigs and the trunks. This study was carried out to ensure whether the pathogen overwinters in the form of perithecium or not. Since the acervuli of the pathogen were formed in inoculated apple trees, it would be possible that the pathogen could overwinter on the twigs, Ascigerous stage was found both under the cuticle of the infected trunk and in outer layers of rotted fruits. Therefore, it could be concluded that the pathogen overwintered in the form of perithecium is a primary inoculum in next year. Ascigerous stage of the appfe bitter rot organism was observed for the first time in Korea.

  • PDF

Microbial transformation of the sweet sesquiterpene (+)-hernandulcin

  • Yang, Hyun-Ju;Kim, Hyun-Jung;Whang, Yun-Ae;Choi, Jung-Kap;Lee, Ik-Soo
    • Natural Product Sciences
    • /
    • v.5 no.3
    • /
    • pp.151-153
    • /
    • 1999
  • (+)-Hernandulcin is a sweet bisabolane-type sesquiterpene first isolated from Lippia dulcis Trev. (Verbenaceae). This oily compound is 1000-1500 times sweeter than sucrose but with poor solubility in water. Microbial transformation was employed to improve its water solubility, and a variety of microorganisms were screened for their ability to convert (+)-hernandulcin to more polar metabolites. Scale-up fermentation with Glomerella cinguiata, a fungal strain, has resulted in the isolation of a more polar metabolite (2).

  • PDF

Effect of Medicinal Plant Extracts on Apple Storage Diseases (약용식물 추출물에 의한 사과 저장병 방제 효과)

  • 백수봉;정일민
    • Korean Journal Plant Pathology
    • /
    • v.13 no.1
    • /
    • pp.57-62
    • /
    • 1997
  • This experiment was conducted to test the control effect of methanol extracts of 10 medicinal plants on apple storage diseases caused by Botryosphaeria berengeriana, Glomerella cingulata and Penicillium expansum. Out of the 10 medicinal plants, methanol extracts of Coptis japonica and Anemarrhena asphodeloides inhibited effectively the mycelial growth of B. berengeriana, G. cingulata and P. expansum in vitro, for which the inhibition ratios of the two plant extracts were 100.0% and 89.3%, 73.7% and 94.1%, and 100.0% and 51.6%, respectively. Spore germination of the three fungi was inhibited 100% only by C. japonica extract, but only P. expansum was inhibited 100% by A. asphodeloides extract. No lesion was formed y the fungi at 5$^{\circ}C$ up to 2 weeks after inoculation. Lesion sizes produced by the three fungi at the temperature ranges of 1$0^{\circ}C$ to $25^{\circ}C$ and infection of B. berengeriana and G. cingulata were inhibited by C. japonica extract, but not by A. asphodeloides extract, while no lesion was formed by the fungi at 5$^{\circ}C$. Infections of the fungi on apples were somewhat stimulated by A. asphodeloides extract.

  • PDF

Anthracnose of Peanut Caused by Colletotrichum gloeosporioides (Colletotrichum gloeosporioides에 의한 땅콩 탄저병)

  • 김주희;이용훈;이왕휴
    • Korean Journal Plant Pathology
    • /
    • v.14 no.6
    • /
    • pp.614-617
    • /
    • 1998
  • Anthracnose of peanut (Arachis hypogaea L.) was found in the peanut cultivating fields in Iksan, Korea in September 1997. Infected plants showed irregularly circular water soaking brown lesions. In the severe case, leaves and stems were entirely died. The causal fungus of anthracnose isolated from the diseased plants was identified as Colletotrichum gloeosporioides Penz. and its teleomorph was Glomerella cingulata (Stonem.) Spauld. & Sch. according to the criteria based on the cultural and morphological characteristics. By arificial inoculation with fungal spores on healthy peanut, anthracnose symptom was observed 15 days after inoculation.

  • PDF

Hyperparawitism of Trichoderma sp. (Trichoderma sp.의 중복기생에 대하여)

  • 채희병;유관희;이배함
    • Korean Journal of Microbiology
    • /
    • v.19 no.1
    • /
    • pp.3-7
    • /
    • 1981
  • Attempts were made to develope the method of biological control by application of hyperparasitism on plant disease. The hyperparasitic fungi used in this work was Trichoderma sp. which was isolated from the ginseng growing soil, and the host fungi were Fusarium oxysporum Schlecht and Glomerella cingulata(St) Spau. et Schr. The hyperparasitic fungi identified as Trichoderma viride. It was observed that the hyperparasitic fungi either contact and penetrate into the hyphae of the host or inhibit the growth of host finally destroy of the host cells.

  • PDF

Isolation and Antifungar Activity of Bacillus ehimensis YJ-37 as Antagonistic against Vegetables Damping-off Fungi (채소류 모잘록병균에 길항하는 Bacillus ehimensis YJ-37의 선발과 항진균성)

  • 주길재;김진호;강상재
    • Journal of Life Science
    • /
    • v.12 no.2
    • /
    • pp.200-207
    • /
    • 2002
  • This study was carried out to isolate of antagonistic bacterium against Pythium ultimum and Rhizoctonia solani AG-4, causal pathogens of vegetables damping-off. Total of 600 strains were isolated from soil and plait roots. The isolates were screened for antagonism against Pythium ultimum and Rhizoctonia solani AG-4. One strain, named YJ-37, was sellected for detained study among those microoganisms screened. It was identified as Bacillus ehimensis based on morphological and physiological characterisitics according to the Bergey's mannual of systematic bacteriology, Sherlock system of Microbial ID Inc. and 16S rDNA sequences methods. Furthermore Bacillus ehimensis YJ-37 showed antifungal activities against Alternaria altrata, Collectotrichum gloeosporioides, Didymella bryoniae, Fusarium moniliforme, Fusarium oxysporum, F. oxysporum cucumerinum, F. oxysporum niveum, Gloeosporium sp., Glomerella sp., G. cingulata, G. lagenaria, Penicillium digitatum, P. italicum, Phytophthora capsici, Sclerotinia sclerotiorum, and Stemprhylium solani.

Collection and Identification of Molds from Citrus Oranges during Post-Harvest Storage (온주밀감 부패 곰팡이의 분리 및 동정)

  • Ko, Young-Hwan;Kim, Se-Jae
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.6
    • /
    • pp.1142-1145
    • /
    • 1996
  • Long term-storage of citrus oranges after harvest has been hindered mainly by molds The goal of this research was to collect and identify those molds, which would help find a way to extend shelf-life after harvest. During the period of 1994 to 1995, fourteen different strains were isolated and purified from putrefied fruit (Citrus unshiu var.) that was stored at room temperature under open air. The storage disease was caused by the following molds: Penicillium italicum, 25.8%, Monilia candida, 19.8%; Alternaria citri, 18.1%; Mucor hiemalis, 11.0%; Phomopsis citri, 6.6%; Botrytis cinerea. 5.5%; Phoma citricarpa, 3.8%; Glomerella cingulata, 3.8%; P. digitatum, 1.1%; other molds, 4.5%; Most of the strains showed pectinolytic activity and putrefaction. These citrus fruit-putrefying molds will be used as target strains for the control of microorganisms during post-harvest storage.

  • PDF