• Title/Summary/Keyword: Globularization

Search Result 14, Processing Time 0.025 seconds

Formation of submicrocrystalline in Ti-13Nb-13Zr alloy without severe deformation and enhanced mechanical compatibility (Ti-13Nb-13Zr 합금의 저 변형량에서 초미세 결정립 형성 및 기계적 적합성 향상)

  • Park, C.H.;Yeom, J.T.;Chun, Y.S.;Lee, C.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.328-331
    • /
    • 2009
  • Microstructural evolution of alpha and beta phases during dynamic globularization of near-beta Ti-13Nb-13Zr alloy was investigated to determine the optimum processing conditions. The submicrocrystalline alloy sheet with ${\sim}80%$ of high-angle grain boundaries was produced utilizing dynamic globularization at temperature of $600^{\circ}C$, equivalent strain rate of $10^{-1}\;s^{-1}$ and strain of 1.4. The refined structure with the gain size of ${\sim}0.4{\mu}m$ showed 25-60% enhanced mechanical compatibility as compared to those of the conventional mill-annealed or solution treated and aged microstructures.

  • PDF

Low-temperature/high-strain rate superplasticity of two-phase titanium alloys (2상 타이타늄 합금의 저온/고속 초소성)

  • Part, C.H.;Lee, C.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.76-79
    • /
    • 2009
  • The current understanding for phase/grain boundary sliding and low-temperature/high-strain rate superplasticity of two-phase titanium alloys is summarized. The quantitative analysis on boundary sliding revealed increased sliding resistance on the order of $\alpha/\beta\;\ll\;\alpha/\alpha\;\approx\;\beta/\beta$ boundary, hence, led to the conclusion that approximately 50% alpha(or beta) volume fraction and/or grain refinement is beneficial for obtaining large superplastic elongation at low temperature and/or high strain rate. To predict the temperature for 50% alpha volume in various alpha/beta Ti, artificial neural network was applied. Finally, much enhanced superplasticity was achieved through grain refinement utilizing dynamic globularization.

  • PDF

Enhanced Superplasticity of Two-phase Titanium Alloys by Microstructure Control (2상 타이타늄 합금의 미세조직 제어를 통한 초소성 특성 향상)

  • Park, C.H.;Lee, C.S.
    • Transactions of Materials Processing
    • /
    • v.19 no.1
    • /
    • pp.5-10
    • /
    • 2010
  • The current understanding for phase/grain boundary sliding and low-temperature/high-strain rate superplasticity of two-phase titanium alloys is summarized. The quantitative analysis on boundary sliding revealed increased sliding resistance on the order of ${\alpha}/{\beta}\;\ll\;{\alpha}/{\alpha}\;{\approx}\;{\beta}/{\beta}$ boundary, hence, led to the conclusion that approximately 50% alpha(or beta) volume fraction and/or grain refinement is beneficial for obtaining large superplastic elongation at low temperature and/or high strain rate. To predict the temperature for 50% alpha volume in various alpha/beta Ti, artificial neural network was applied. Finally, much enhanced superplasticity was achieved through grain refinement utilizing dynamic globularization.

A Study on Conrol of Surfacial and Internal Microsructure in Thixoforming Process (반용융 성형공장에서 표면 및 내부 조직 제어에 관한 연구)

  • 이동건
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.169-172
    • /
    • 1999
  • Thixoforming process has been accepted as a new method for fabricating near net shaped products with lighweight aluminum alloys. The thixoforming process consists of reheating process of billet, billet handing filling into the die cavity and solidification of thixoformed part,. in this paper the thixoforming experiments are performed with two different die temperature ({{{{ TAU _d}}}}=20$0^{\circ}C$ 30$0^{\circ}C$) and orifice gate type. The microstructures of SSM(357, A490 and ALTHIX 86S) fabricated in thixoforming process are evaluated in therms of globularization and grain size. effect of alloying elements onthe surface and internal defects is investigated. Finally the methods to obtain the thixoformed products with good mechanical propertis are proposed by solution for avoiding the surface and internal defects.

  • PDF

A fundamental study on semi-solid forging with light and hardly formable materials (난가공성 경량소재의 반용융 단조에 관한 기초 연구)

  • Choi, J.C.;Cho, H.Y.;Min, G.S.;Park, H.J.;Choi, J.U.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.7
    • /
    • pp.29-35
    • /
    • 1996
  • For semi-solid forging with aluminuim alloys, it is required to develope the globular grain structure. It was studide that cold upsetting ration in SIMA process has effect on the globularization of grain structure. Globular microstructure was generated without cold upsettings for commercial aluminium alloys. In the case of A12024, the range of grain size was 40 .approx. 50 .mu. m. The grain growth in growth in globular microstructure depend on heating time. Spur gear was forged in semi-solid state to investigate the forging condition for A12024 with hydraulic press.

  • PDF

An Experimental Study on the Fabrication and the Compression Behavior of Semi-Solid Aluminum Material (반응용 알루미늄재료의 제조 및 압축거동에 관한 실험적 연구)

  • Gang, Chung-Gil;Yun, Jong-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.3
    • /
    • pp.796-805
    • /
    • 1996
  • A fabrication process using Semi-Solid Material(SSM) for casting alloy has been studied to demonstrate the possibility for mass production with controlled solid fraction. The SSM was fabricated under the various solid fractions and preheating temperatures of mold. The behaviour of a semi-solid global microstructure has been investigated under the various heating and die temperatures for solid fraction. The effect of reheating time on the globularization of SSM microstructure has been investigated in detail. And the behavior of SSM which has the solid fraction 0.5 was observed under compression. The stress strain relationship was also obtained for the compression test of semi-solid materials. The rheological behaviour of semi-solid with globule microstructure was investigated as a function of the compression velocity under isothermal holing conditions.

Low-Temperature Superplastic Deformation Behavior of Fine-Grained Ti-6Al-2Sn-4Zr-2Mo-0.1Si Alloy (미세 결정립 Ti-6Al-2Sn-4Zr-2Mo-0.1Si 합금의 저온 초소성 변형 거동)

  • Park, C.H.;Lee, B.;Lee, C.S.
    • Transactions of Materials Processing
    • /
    • v.18 no.7
    • /
    • pp.544-549
    • /
    • 2009
  • This study aimed to elucidate the deformation mechanism during low-temperature superplasticity of fine-grained Ti-6Al-2Sn-4Zr-2Mo-0.1Si alloy in the context of constitutive equation. For this purpose, initial coarse equiaxed microstructure was refined to $2.2{\mu}m$ via dynamic globularization. Globularized microstructure exhibited large superplastic elongations(434-826%) at temperatures of $650-750^{\circ}C$ and strain rate of $10^{-4}s^{-1}$. It was found that the main deformation mechanism of fine-grained material was grain boundary sliding accommodated by dislocation motion with both stress exponent (n) and grain size exponent (p) values of 2. When the alpha grain size, not sub-grain size, was considered to be an effective grain size, the apparent activation energy for low-temperature superplasticity of the present alloy(169kJ/mol) was closed to that of Ti-6Al-4V alloy(160kJ/mol).

Performance Improvement of Epoxy Resin System by the Filler Reformation (충진제 개질을 통한 에폭시복합체의 성능개선)

  • Yi, Dong-Young
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.1
    • /
    • pp.130-135
    • /
    • 2010
  • In this study, the performance improvement of epoxy resin system had been tried by the improvement of particle size distribution and globularization of filler using polymerization method. From the results of particle size distribution measurement, the polydispersity value of reformed filler was 1.04 and that of silica flour before reformation was 2.6, it could be confirmed that the particle size uniformity of reformed filler had been improved greatly and the shape of particle was globular. Compatibility between monomer and silica was improved remarkably with the silanization pretreatment of silica flour. From the results of degree of crosslinking test, it could be confirmed that the binding structure of reformed filler was 3-dimensional net structure. And it could be also confirmed that the fluidness was improved at the casting of epoxy resin with reformed filler. From the above results, it could be concluded that the reformation of filler with the improvement of particle size distribution and globularization was very successful method to improve the performance of cast epoxy resin system.

The Influence of Effective Strain on the Globular Microstructure by SIMA Process for Semi-Solid Forging (반용융 단조를 위한 SIMA 공정에서 유효 변형률이 구상화 조직에 미치는 영향)

  • Park, H.J.;Lee, B.M.;Park, J.C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.9
    • /
    • pp.45-51
    • /
    • 1997
  • For semi-solid forging, it is necessarily required to prepare a workpiece with globular microstructure. Among several processes to obtain golbular microstructure, SIMA process is very simple and advantageous with respect to equipment. This paper presents the influence of effective strain on the globularization with aluminium 2024 alloy in cold working stage by SIMA process. Upsetting and forward extrusion are tested for cold working and induction heating is also carried out for reheating to obtain golbular microstructure. Microstructure is observed with an optical microscope. And finite element simulations to obtain effective strain in cold working stage are performed by using commercial finite element code, DEFORM.

  • PDF

A Study on Optimum Reheating Process of Automotive Aluminum Piston using Neural Network and the Taguchi Method in Semi-Solid forming (반용융 성헝에서의 다구찌 방법과 신경망을 이용한 자동차 알루미늄 피스톤의 최적 재가열 과정에 대한 연구)

  • 윤재민;김영호;박준홍;최재찬
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.902-905
    • /
    • 2000
  • As the manufacturing processes of automotive engine piston, gravity die-casting, squeeze casting, hot forging and powder forging process are generally used for the various specifications. As the semi-solid forming(SSF) is compared with conventional casting such as gravity die-casting and squeeze casting for the characteristics of its process, the product without inner defects such as gas porosity and segregation can be obtained and its microstructure is globular grain. In SSF process, the materials are heated up to the temperature between the solvus and liquidus line at which the materials exists in the form of liquid-solid mixture. In this time, Discussion is given about reheating process of row material and results are presented regarding accurate temperature and process variables controlling for right solid fractions.

  • PDF