• Title/Summary/Keyword: Global warming

Search Result 2,192, Processing Time 0.033 seconds

Characteristics of Spectra of Daily Satellite Sea Surface Temperature Composites in the Seas around the Korean Peninsula (한반도 주변해역 일별 위성 해수면온도 합성장 스펙트럼 특성)

  • Woo, Hye-Jin;Park, Kyung-Ae;Lee, Joon-Soo
    • Journal of the Korean earth science society
    • /
    • v.42 no.6
    • /
    • pp.632-645
    • /
    • 2021
  • Satellite sea surface temperature (SST) composites provide important data for numerical forecasting models and for research on global warming and climate change. In this study, six types of representative SST composite database were collected from 2007 to 2018 and the characteristics of spatial structures of SSTs were analyzed in seas around the Korean Peninsula. The SST composite data were compared with time series of in-situ measurements from ocean meteorological buoys of the Korea Meteorological Administration by analyzing the maximum value of the errors and its occurrence time at each buoy station. High differences between the SST data and in-situ measurements were detected in the western coastal stations, in particular Deokjeokdo and Chilbaldo, with a dominant annual or semi-annual cycle. In Pohang buoy, a high SST difference was observed in the summer of 2013, when cold water appeared in the surface layer due to strong upwelling. As a result of spectrum analysis of the time series SST data, daily satellite SSTs showed similar spectral energy from in-situ measurements at periods longer than one month approximately. On the other hand, the difference of spectral energy between the satellite SSTs and in-situ temperature tended to magnify as the temporal frequency increased. This suggests a possibility that satellite SST composite data may not adequately express the temporal variability of SST in the near-coastal area. The fronts from satellite SST images revealed the differences among the SST databases in terms of spatial structure and magnitude of the oceanic fronts. The spatial scale expressed by the SST composite field was investigated through spatial spectral analysis. As a result, the high-resolution SST composite images expressed the spatial structures of mesoscale ocean phenomena better than other low-resolution SST images. Therefore, in order to express the actual mesoscale ocean phenomenon in more detail, it is necessary to develop more advanced techniques for producing the SST composites.

Abnormal Water Temperature Prediction Model Near the Korean Peninsula Using LSTM (LSTM을 이용한 한반도 근해 이상수온 예측모델)

  • Choi, Hey Min;Kim, Min-Kyu;Yang, Hyun
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.3
    • /
    • pp.265-282
    • /
    • 2022
  • Sea surface temperature (SST) is a factor that greatly influences ocean circulation and ecosystems in the Earth system. As global warming causes changes in the SST near the Korean Peninsula, abnormal water temperature phenomena (high water temperature, low water temperature) occurs, causing continuous damage to the marine ecosystem and the fishery industry. Therefore, this study proposes a methodology to predict the SST near the Korean Peninsula and prevent damage by predicting abnormal water temperature phenomena. The study area was set near the Korean Peninsula, and ERA5 data from the European Center for Medium-Range Weather Forecasts (ECMWF) was used to utilize SST data at the same time period. As a research method, Long Short-Term Memory (LSTM) algorithm specialized for time series data prediction among deep learning models was used in consideration of the time series characteristics of SST data. The prediction model predicts the SST near the Korean Peninsula after 1- to 7-days and predicts the high water temperature or low water temperature phenomenon. To evaluate the accuracy of SST prediction, Coefficient of determination (R2), Root Mean Squared Error (RMSE), and Mean Absolute Percentage Error (MAPE) indicators were used. The summer (JAS) 1-day prediction result of the prediction model, R2=0.996, RMSE=0.119℃, MAPE=0.352% and the winter (JFM) 1-day prediction result is R2=0.999, RMSE=0.063℃, MAPE=0.646%. Using the predicted SST, the accuracy of abnormal sea surface temperature prediction was evaluated with an F1 Score (F1 Score=0.98 for high water temperature prediction in summer (2021/08/05), F1 Score=1.0 for low water temperature prediction in winter (2021/02/19)). As the prediction period increased, the prediction model showed a tendency to underestimate the SST, which also reduced the accuracy of the abnormal water temperature prediction. Therefore, it is judged that it is necessary to analyze the cause of underestimation of the predictive model in the future and study to improve the prediction accuracy.

Retrieval of Vegetation Health Index for the Korean Peninsula Using GK2A AMI (GK2A AMI를 이용한 한반도 식생건강지수 산출)

  • Lee, Soo-Jin;Cho, Jaeil;Ryu, Jae-Hyun;Kim, Nari;Kim, Kwangjin;Sohn, Eunha;Park, Ki-Hong;Jang, Jae-Cheol;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.2
    • /
    • pp.179-188
    • /
    • 2022
  • Global warming causes climate change and increases extreme weather events worldwide, and the occurrence of heatwaves and droughts is also increasing in Korea. For the monitoring of extreme weather, various satellite data such as LST (Land Surface Temperature), TCI (Temperature Condition Index), NDVI (Normalized Difference Vegetation Index), VCI (Vegetation Condition Index), and VHI (Vegetation Health Index) have been used. VHI, the combination of TCI and VCI, represents the vegetation stress affected by meteorological factors like precipitation and temperature and is frequently used to assess droughts under climate change. TCI and VCI require historical reference values for the LST and NDVI for each date and location. So, it is complicated to produce the VHI from the recent satellite GK2A (Geostationary Korea Multi-Purpose Satellite-2A). This study examined the retrieval of VHI using GK2A AMI (Advanced Meteorological Imager) by referencing the historical data from VIIRS (Visible Infrared Imaging Radiometer Suite) NDVI and LST as a proxy data. We found a close relationship between GK2A and VIIRS data needed for the retrieval of VHI. We produced the TCI, VCI, and VHI for GK2A during 2020-2021 at intervals of 8 days and carried out the interpretations of recent extreme weather events in Korea. GK2A VHI could express the changes in vegetation stress in 2020 due to various extreme weather events such as heatwaves (in March and June) and low temperatures (in April and July), and heavy rainfall (in August), while NOAA (National Oceanic and Atmospheric Administration) VHI could not well represent such characteristics. The GK2A VHI presented in this study can be utilized to monitor the vegetation stress due to heatwaves and droughts if the historical reference values of LST and NDVI can be adjusted in a more statistically significant way in the future work.

A study on the derivation and evaluation of flow duration curve (FDC) using deep learning with a long short-term memory (LSTM) networks and soil water assessment tool (SWAT) (LSTM Networks 딥러닝 기법과 SWAT을 이용한 유량지속곡선 도출 및 평가)

  • Choi, Jung-Ryel;An, Sung-Wook;Choi, Jin-Young;Kim, Byung-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.spc1
    • /
    • pp.1107-1118
    • /
    • 2021
  • Climate change brought on by global warming increased the frequency of flood and drought on the Korean Peninsula, along with the casualties and physical damage resulting therefrom. Preparation and response to these water disasters requires national-level planning for water resource management. In addition, watershed-level management of water resources requires flow duration curves (FDC) derived from continuous data based on long-term observations. Traditionally, in water resource studies, physical rainfall-runoff models are widely used to generate duration curves. However, a number of recent studies explored the use of data-based deep learning techniques for runoff prediction. Physical models produce hydraulically and hydrologically reliable results. However, these models require a high level of understanding and may also take longer to operate. On the other hand, data-based deep-learning techniques offer the benefit if less input data requirement and shorter operation time. However, the relationship between input and output data is processed in a black box, making it impossible to consider hydraulic and hydrological characteristics. This study chose one from each category. For the physical model, this study calculated long-term data without missing data using parameter calibration of the Soil Water Assessment Tool (SWAT), a physical model tested for its applicability in Korea and other countries. The data was used as training data for the Long Short-Term Memory (LSTM) data-based deep learning technique. An anlysis of the time-series data fond that, during the calibration period (2017-18), the Nash-Sutcliffe Efficiency (NSE) and the determinanation coefficient for fit comparison were high at 0.04 and 0.03, respectively, indicating that the SWAT results are superior to the LSTM results. In addition, the annual time-series data from the models were sorted in the descending order, and the resulting flow duration curves were compared with the duration curves based on the observed flow, and the NSE for the SWAT and the LSTM models were 0.95 and 0.91, respectively, and the determination coefficients were 0.96 and 0.92, respectively. The findings indicate that both models yield good performance. Even though the LSTM requires improved simulation accuracy in the low flow sections, the LSTM appears to be widely applicable to calculating flow duration curves for large basins that require longer time for model development and operation due to vast data input, and non-measured basins with insufficient input data.

Modeling of Vegetation Phenology Using MODIS and ASOS Data (MODIS와 ASOS 자료를 이용한 식물계절 모델링)

  • Kim, Geunah;Youn, Youjeong;Kang, Jonggu;Choi, Soyeon;Park, Ganghyun;Chun, Junghwa;Jang, Keunchang;Won, Myoungsoo;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.627-646
    • /
    • 2022
  • Recently, the seriousness of climate change-related problems caused by global warming is growing, and the average temperature is also rising. As a result, it is affecting the environment in which various temperature-sensitive creatures and creatures live, and changes in the ecosystem are also being detected. Seasons are one of the important factors influencing the types, distribution, and growth characteristics of creatures living in the area. Among the most popular and easily recognized plant seasonal phenomena among the indicators of the climate change impact evaluation, the blooming day of flower and the peak day of autumn leaves were modeled. The types of plants used in the modeling were forsythia and cherry trees, which can be seen as representative plants of spring, and maple and ginkgo, which can be seen as representative plants of autumn. Weather data used to perform modeling were temperature, precipitation, and solar radiation observed through the ASOS Observatory of the Korea Meteorological Administration. As satellite data, MODIS NDVI was used for modeling, and it has a correlation coefficient of about -0.2 for the flowering date and 0.3 for the autumn leaves peak date. As the model used, the model was established using multiple regression models, which are linear models, and Random Forest, which are nonlinear models. In addition, the predicted values estimated by each model were expressed as isopleth maps using spatial interpolation techniques to express the trend of plant seasonal changes from 2003 to 2020. It is believed that using NDVI with high spatio-temporal resolution in the future will increase the accuracy of plant phenology modeling.

Changes of Yield and Quality in Potato (Solanum tuberosum L.) by Heat Treatment (폭염처리에 의한 감자의 수량성과 품질 변화)

  • Lee, Gyu-Bin;Choi, Jang-Gyu;Park, Young-Eun;Jung, Gun-Ho;Kwon, Do-Hee;Jo, Kwang-Ryong;Cheon, Chung-Gi;Chang, Dong Chil;Jin, Yong-Ik
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.3
    • /
    • pp.145-154
    • /
    • 2022
  • Due to abnormal weather conditions caused by climate change, natural disasters and damages are gradually increasing around the world. Global climate change as accompanied by warming is projected to exert adverse impact on production of potato, which is known as cool season crop. Even though, role of potato as a food security crop is expected to increase in the future, the climate change impacts on potato and adaption strategies are not sufficiently established. Therefore, this study was conducted to analyze the damage pattern of potatoes due to high temperature treatment and to evaluate the response of cultivars. T he high temperature treatment (35~38℃) induced heat stress by sealing the plastic house in midsummer (July), and the quantity and quality characteristics of potatoes were compared with the control group. T otal yield, marketable yield (>80 g) and the number of tubers per plants decreased when heat treatment was performed, and statistical significance was evident. In the heat treatment, 'Jayoung' cultivar suffered a high heat damage with an 84% reduction in yield of >80 g compared to the control group. However, in Jopung cultivar, the decrease was relatively small at 26%. Tuber physiological disturbances (Secondary growth, Tuber cracking, Malformation) tended to increase in the heat stress. Under heat conditions, the tubers were elongated overall, which means that the marketability of potatoes was lowered. T he tuber firmness and dry matter content tended to decrease significantly in the heat-treated group. T herefore, the yield and quality of tubers were damaged when growing potatoes in heat conditions. T he cultivar with high heat adaptability was 'Jopung'. T his result can be used as basic data for potato growers and breeding of heat-resistant cultivars.

Effects of Climatic Factors on the Nationwide Distribution of Wild Aculeata (Insecta: Hymenoptera) (전국 야생 벌목 분포에 대한 기후요인 영향 연구)

  • Yu, Dong-Su;Kwon, Oh-Chang;Shin, Man-Seok;Kim, Jung-Kyu;Lee, Sang-Hun
    • Korean Journal of Environment and Ecology
    • /
    • v.36 no.3
    • /
    • pp.303-317
    • /
    • 2022
  • Climate change caused by increased greenhouse gas emissions can alter the natural ecosystem, including the pollination ecosystem and agricultural ecology, which are ecological interactions between potted insects and plants. Many studies have reported that populations of wild bees, including bees and wasps (BW), which are the key pollinators, have gradually declined due to climate change, leading to adverse impacts on overall biodiversity, ultimately with agribusinesses and the life cycle of flowering plants. Therefore, we could infer that the rising temperature in Korean Peninsula (South Korea) due to global warming has led to climate change and influenced the wild bee's ecosystem. In this study, we surveyed the distributional pattern of BW (Superfamily: Apoidea, Vespoidea, and Chrysidoidea) at 51 sites from 2017 (37 sites) to 2018 (14 sites) to examine the effects of climatic factors on the nationwide distribution of BW in South Korea. Previous literature has confirmed that their distribution according to forest climate zones is significantly correlated with mean and accumulative temperatures. Based on the result, we predicted the effects of future climate changes on the BW distribution that appeared throughout South Korea and the species that appeared in specific climate zones using Shared Socioeconomic Pathways (SSPs). The distributions of wild BW predicted by the SSP scenarios 2-4.5 and 5-8.5 according to the BIOMOD species distribution model revealed that common and endemic species will shift northward from the current habitat distribution by 2050 and 2100, respectively. Our study implies that climate change and its detrimental effect on the ecosystem is ongoing as the BW distribution in South Korea can change, causing the change in the ecosystem in the Korean Peninsula. Therefore, immediate efforts to mitigate greenhouse gas emissions are warranted. We hope the findings of this study can inspire further research on the effects of climate change on pollination services and serve as the reference for making agricultural policy and BW conservation strategy

Characteristics of Astronomical Tide and Sea Level Fluctuations in Kiribati and Neighboring Countries (키리바시와 주변국 천문조위 특성 및 해수면 변동)

  • Kim, Yangoh;Kim, Jongkyu;Kim, Hyeon-Ju
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.5
    • /
    • pp.746-752
    • /
    • 2022
  • Kiribati, a South Pacific island, and its surrounding countries are gradually submerging to rising sea levels. The sea level continues to change according to the degree of thermal expansion of glaciers and seawater that decreases with increase in temperature. Global warming affects both the amount and volume of seawater, thus increasing sea level. Tidal phenomena occur twice a day to the attraction of celestial bodies such as the moon and the sun. The moon changes the angle of orbiting surface with the Earth equator every 18.6 years, and the magnitude of the tidal force changes depending on the distance between the Earth equator and the moon orbital surface. The University of Hawaii Sea Level Center selected Tarawa, Christmas, Kanton of Kiribati,, Lautoka, Suva of Fiji,Funafuti of Tuvalu, Nuk1u'alofa of Tonga, and Port Vila of Vanuatu. When comparing tide levels for each year for 19 years, the focus was on checking the change in sleep to Tide levels, and rising sea levels was the effect of Tide levels. The highest astronomical tides (HAT) and lowest astronomical tides (LAT) were identified as Tarawa 297.0, 50.8 cm, Christmas 123.8, 19.9 cm, Kanton 173.7, 39.9 cm, Lautoka 240.7, 11.3 cm, Funafuti 328.6, 98.4 cm, Nuk1u'alofa 188.8, 15.5 cm, Port Vila 161.5, -0.5cm, respectively. The Sea level rising speed was Tarawa 3.1 mm/year, Christmas -1.0 mm/year, Kanton 1.6 mm/year, Lautoka 3.1 mm/year, Suva 7.4 mm/year, Funafuti 1.4 mm/year, Nuk1u'alofa 4.2 mm/year, and Port Vila -1.2 mm/year, respectively

Review of the Weather Hazard Research: Focused on Typhoon, Heavy Rain, Drought, Heat Wave, Cold Surge, Heavy Snow, and Strong Gust (위험기상 분야의 지난 연구를 뒤돌아보며: 태풍, 집중호우, 가뭄, 폭염, 한파, 강설, 강풍을 중심으로)

  • Chang-Hoi Ho;Byung-Gon Kim;Baek-Min Kim;Doo-Sun R. Park;Chang-Kyun Park;Seok-Woo Son;Jee-Hoon Jeong;Dong-Hyun Cha
    • Atmosphere
    • /
    • v.33 no.2
    • /
    • pp.223-246
    • /
    • 2023
  • This paper summarized the research papers on weather extremes that occurred in the Republic of Korea, which were published in the domestic and foreign journals during 1963~2022. Weather extreme is defined as a weather phenomenon that causes serious casualty and property loss; here, it includes typhoon, heavy rain, drought, heat wave, cold surge, heavy snow, and strong gust. Based on the 2011~2020 statistics in Korea, above 80% of property loss due to all natural disasters were caused by typhoons and heavy rainfalls. However, the impact of the other weather extremes can be underestimated rather than we have actually experienced; the property loss caused by the other extremes is hard to be quantitatively counted. Particularly, as global warming becomes serious, the influence of drought and heat wave has been increasing. The damages caused by cold surges, heavy snow, and strong gust occurred over relatively local areas on short-term time scales compared to other weather hazards. In particularly, strong gust accompanied with drought may result in severe forest fires over mountainous regions. We hope that the present review paper may remind us of the importance of weather extremes that directly affect our lives.

Utilizing the Idle Railway Sites: A Proposal for the Location of Solar Power Plants Using Cluster Analysis (철도 유휴부지 활용방안: 군집분석을 활용한 태양광발전 입지 제안)

  • Eunkyung Kang;Seonuk Yang;Jiyoon Kwon;Sung-Byung Yang
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.1
    • /
    • pp.79-105
    • /
    • 2023
  • Due to unprecedented extreme weather events such as global warming and climate change, many parts of the world suffer from severe pain, and economic losses are also snowballing. In order to address these problems, 'The Paris Agreement' was signed in 2016, and an intergovernmental consultative body was formed to keep the average temperature rise of the Earth below 1.5℃. Korea also declared 'Carbon Neutrality in 2050' to prevent climate catastrophe. In particular, it was found that the increase in temperature caused by greenhouse gas emissions hurts the environment and society as a whole, as well as the export-dependent economy of Korea. In addition, as the diversification of transportation types is accelerating, the change in means of choice is also increasing. As the development paradigm in the low-growth era changes to urban regeneration, interest in idle railway sites is rising due to reduced demand for routes, improvement of alignment, and relocation of urban railways. Meanwhile, it is possible to partially achieve the solar power generation goal of 'Renewable Energy 3020' by utilizing already developed but idle railway sites and take advantage of being free from environmental damage and resident acceptance issues surrounding the location; but the actual use and plan for these solar power facilities are still lacking. Therefore, in this study, using the big data provided by the Korea National Railway and the Renewable Energy Cloud Platform, we develop an algorithm to discover and analyze suitable idle sites where solar power generation facilities can be installed and identify potentially applicable areas considering conditions desired by users. By searching and deriving these idle but relevant sites, it is intended to devise a plan to save enormous costs for facilities or expansion in the early stages of development. This study uses various cluster analyses to develop an optimal algorithm that can derive solar power plant locations on idle railway sites and, as a result, suggests 202 'actively recommended areas.' These results would help decision-makers make rational decisions from the viewpoint of simultaneously considering the economy and the environment.