• Title/Summary/Keyword: Global search

Search Result 859, Processing Time 0.031 seconds

Improvement of dynamic encoding algorithm for searches (DEAS) using hopping unidirectional search (HUDS)

  • Choi, Seong-Chul;Kim, Nam-Gun;Kim, Jong-Wook;Kim, Sang-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.324-329
    • /
    • 2005
  • Dynamic Encoding Algorithm for Searches (DEAS) which is known as a fast and reliable non-gradient optimization method, was proposed [1]. DEAS reaches local or global optimum with binary strings (or binary matrices for multi-dimensional problem) by iterating the two operations; bisectional search (BSS) and unidirectional search (UDS). BSS increases binary strings by one digit (i.e., 0 or 1), while UDS performs increment or decrement of binary strings in the BSS' result direction with no change of string length. Because the interval of UDS exponentially decreases with increment of bit string length (BSL), DEAS is difficult to escape from local optimum when DEAS falls into local optimum. Therefore, this paper proposes hopping UDS (HUDS) which performs UDS by hopping as many as BSL in the final point of UDS process. HUDS helps to escape from local optimum and enhances a probability searching global optimization. The excellent performance of HUDS will be validated through the well-known benchmark functions.

  • PDF

A Study about Additional Reinforcement in Local Updating and Global Updating for Efficient Path Search in Ant Colony System (Ant Colony System에서 효율적 경로 탐색을 위한 지역갱신과 전역갱신에서의 추가 강화에 관한 연구)

  • Lee, Seung-Gwan;Chung, Tae-Choong
    • The KIPS Transactions:PartB
    • /
    • v.10B no.3
    • /
    • pp.237-242
    • /
    • 2003
  • Ant Colony System (ACS) Algorithm is new meta heuristic for hard combinatorial optimization problem. It is a population based approach that uses exploitation of positive feedback as well as greedy search. It was first proposed for tackling the well known Traveling Salesman Problem (TSP). In this paper, we introduce ACS of new method that adds reinforcement value for each edge that visit to Local/Global updating rule. and the performance results under various conditions are conducted, and the comparision between the original ACS and the proposed method is shown. It turns out that our proposed method can compete with tile original ACS in terms of solution quality and computation speed to these problem.

Performance Improvement of Multi-Start in uDEAS Using Guided Random Bit Generation (유도된 이진난수 생성법을 이용한 uDEAS의 Multi-start 성능 개선)

  • Kim, Eun-Su;Kim, Man-Seak;Kim, Jong-Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.4
    • /
    • pp.840-848
    • /
    • 2009
  • This paper proposes a new multi-start scheme that generates guided random bits in selecting initial search points for global optimization with univariate dynamic encoding algorithm for searches (uDEAS). The proposed method counts the number of 1 in each bit position from all the previously generated initial search matrices and, based on this information, generates 0 in proportion with the probability of selecting 1. This rule is simple and effective for improving diversity of initial search points. The performance improvement of the proposed multi-start is validated through implementation in uDEAS and function optimization experiments.

Hybrid evolutionary identification of output-error state-space models

  • Dertimanis, Vasilis K.;Chatzi, Eleni N.;Spiridonakos, Minas D.
    • Structural Monitoring and Maintenance
    • /
    • v.1 no.4
    • /
    • pp.427-449
    • /
    • 2014
  • A hybrid optimization method for the identification of state-space models is presented in this study. Hybridization is succeeded by combining the advantages of deterministic and stochastic algorithms in a superior scheme that promises faster convergence rate and reliability in the search for the global optimum. The proposed hybrid algorithm is developed by replacing the original stochastic mutation operator of Evolution Strategies (ES) by the Levenberg-Marquardt (LM) quasi-Newton algorithm. This substitution results in a scheme where the entire population cloud is involved in the search for the global optimum, while single individuals are involved in the local search, undertaken by the LM method. The novel hybrid identification framework is assessed through the Monte Carlo analysis of a simulated system and an experimental case study on a shear frame structure. Comparisons to subspace identification, as well as to conventional, self-adaptive ES provide significant indication of superior performance.

Vibration Optimization Design of Ship Structure Using NASTRAN-based R-Tabu Search Method (NASTRAN 기반 R-Tabu 탐색법을 이용한 선박구조물의 진동최적설계)

  • 채상일;송진대;김용한;공영모;최수현;양보석
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.672-676
    • /
    • 2003
  • Recently, the importance of ship vibration is emerging due to the large scaling, high speed and lightning of ship. For pleasantness in a cabin, shipbuilders ask for strict vibration criteria and the degree of vibration level at a deckhouse became an important condition for taking order from customers. This study conducted optimum design to attenuate vibration level of a deckhouse to solve above problems. New method was implemented, that is NASTRAN external call type independence optimization method. The merit of this method is global searching after setting various object functions and design variables. The global optimization algorithm used here is R-Tabu search method, which has fast converging time and searching various size domains. By modeling similar type to ship structure, validity of the suggested method was investigated.

  • PDF

Design of Occupant Protection Systems Using Global Optimization (전역 최적화기법을 이용한 승객보호장치의 설계)

  • Jeon, Sang-Ki;Park, Gyung-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.6
    • /
    • pp.135-142
    • /
    • 2004
  • The severe frontal crash tests are NCAP with belted occupant at 35mph and FMVSS 208 with unbelted occupant at 25mph, This paper describes the design process of occupant protection systems, airbag and seat belt, under the two tests. In this study, NCAP simulations are performed by Monte Carlo search method and cluster analysis. The Monte Carlo search method is a global optimization technique and requires execution of a series of deterministic analyses, The procedure is as follows. 1) Define the region of interest 2) Perform Monte Carlo simulation with uniform distribution 3) Transform output to obtain points grouped around the local minima 4) Perform cluster analysis to obtain groups that are close to each other 5) Define the several feasible design ranges. The several feasible designs are acquired and checked under FMVSS 208 simulation with unbelted occupant at 25mph.

Chaos Search Method for Reconfiguration Problem in Unbalanced Distribution Systems (불평형 배전계통의 선로 재구성문제를 위한 카오스 탐색법 응용)

  • Rhee, Sang-Bong;Kim, Kyu-Ho;Lee, Yu-Jeong;You, Seok-Ku
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.403-405
    • /
    • 2003
  • In this paper, we applied a chaos search method for feeder reconfiguration problem in unbalanced distribution system. Chaos method, in optimization problem, searches the global optimal solution on the regularity of chaotic motions and more easily escapes from local or near optimal solution than stochastic optimization algorithms. The chaos search method applied to the IEEE 13 unbalanced test feeder systems, and the test results indicate that it is able to determine appropriate switching options for global optimum configuration.

  • PDF

OPTIMIZATION OF A DRIVER-SIDE AIRBAG USING KRIGING AND TABU SEARCH METHODS (크리깅과 타부탐색법을 이용한 운전석 에어백의 최적설계)

  • Kim, Jeung-Hwan;Lee, Kwom-Hee;Joo, Won-Sik
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1035-1040
    • /
    • 2004
  • In the proto design stage of a new car, the performance of an occupant protection system is often evaluated by CAE instead of the real test. CAE predicts and recommends the appropriate design values hence reducing the number of the real tests. However, the existing researches using CAE in predicting the performances do not consider the uncertainties of parameters, in which inconsistency between the actual test results and CAE exists. In this research, the optimization procedure of a protection system such as airbag and load limiter is suggested for the frontal collision. The DACE modeling known as Kriging interpolation is introduced to obtain the meta model of the system followed by the tabu search method to determine a global optimum. Finally, the distribution of a suggested design is determined through the Monte-Carlo Simulation.

  • PDF

Parallel algorithm of global routing for general purpose associative processign system (법용 연합 처리 시스템에서의 전역배선 병렬화 기법)

  • Park, Taegeun
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.4
    • /
    • pp.93-102
    • /
    • 1995
  • This paper introduces a general purpose Associative Processor(AP) which is very efficient for search-oriented applications. The proposed architecture consists of three main functional blocks: Content-Addressable Memory(CAM) arry, row logic, and control section. The proposed AP is a Single-Instruction, Multiple-Data(SIMD) device based on a CAM core and an array of high speed processors. As an application for the proposed hardware, we present a parallel algorithm to solve a global routing problem in the layout process utilizing the processing capabilities of a rudimentary logic and the selective matching and writing capability of CAMs, along with basic algorithms such a minimum(maximum) search, less(greater) than search and parallel arithmetic. We have focused on the simultaneous minimization of the desity of the channels and the wire length by sedking a less crowded channel with shorter wire distance. We present an efficient mapping technique of the problem into the CAM structure. Experimental results on difficult examples, on randomly generated data, and on benchmark problems from MCNC are included.

  • PDF

Learning an Artificial Neural Network Using Dynamic Particle Swarm Optimization-Backpropagation: Empirical Evaluation and Comparison

  • Devi, Swagatika;Jagadev, Alok Kumar;Patnaik, Srikanta
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.2
    • /
    • pp.123-131
    • /
    • 2015
  • Training neural networks is a complex task with great importance in the field of supervised learning. In the training process, a set of input-output patterns is repeated to an artificial neural network (ANN). From those patterns weights of all the interconnections between neurons are adjusted until the specified input yields the desired output. In this paper, a new hybrid algorithm is proposed for global optimization of connection weights in an ANN. Dynamic swarms are shown to converge rapidly during the initial stages of a global search, but around the global optimum, the search process becomes very slow. In contrast, the gradient descent method can achieve faster convergence speed around the global optimum, and at the same time, the convergence accuracy can be relatively high. Therefore, the proposed hybrid algorithm combines the dynamic particle swarm optimization (DPSO) algorithm with the backpropagation (BP) algorithm, also referred to as the DPSO-BP algorithm, to train the weights of an ANN. In this paper, we intend to show the superiority (time performance and quality of solution) of the proposed hybrid algorithm (DPSO-BP) over other more standard algorithms in neural network training. The algorithms are compared using two different datasets, and the results are simulated.