• 제목/요약/키워드: Global optimization

검색결과 1,120건 처리시간 0.029초

A Framework for Universal Cross Layer Networks

  • Khalid, Murad;Sankar, Ravi;Joo, Young-Hoon;Ra, In-Ho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제8권4호
    • /
    • pp.239-247
    • /
    • 2008
  • In a resource-limited wireless communication environment, various approaches to meet the ever growing application requirements in an efficient and transparent manner, are being researched and developed. Amongst many approaches, cross layer technique is by far one of the significant contributions that has undoubtedly revolutionized the way conventional layered architecture is perceived. In this paper, we propose a Universal Cross Layer Framework based on vertical layer architecture. The primary contribution of this paper is the functional architecture of the vertical layer which is primarily responsible for cross layer interaction management and optimization. The second contribution is the use of optimization cycle that comprises awareness parameters collection, mapping, classification and the analysis phases. The third contribution of the paper is the decomposition of the parameters into local and global network perspective for opportunistic optimization. Finally, we have shown through simulations how parameters' variations can represent local and global views of the network and how we can set local and global thresholds to perform opportunistic optimization.

휜형 원형관의 형상 최적화를 위한 다목적 전역 최적화 기법의 응용 (An Application of Multi-Objective Global Optimization Technique for Internally Finned Tube)

  • 이상환;이주희;박경우
    • 설비공학논문집
    • /
    • 제17권10호
    • /
    • pp.938-946
    • /
    • 2005
  • Shape optimization of internally finned circular tube has been peformed for periodically fully developed turbulent flow and heat transfer. The physical domain considered in this study is very complicated due to periodic boundary conditions both streamwise and circumferential directions. Therefore, Pareto frontier sets of a heat exchanger can be acquired by coupling the CFD and the multi-objective genetic algorithm, which is a global optimization technique. The optimal values of fin widths $(d_1,\;d_2)$ and fin height (H) are numerically obtained by minimizing the pressure loss and maximizing the heat transfer rate within ranges of $d_1=0.2\sim1.5\;mm,\;d_2=0.2\sun1.5\;mm,\;and\;H=0.2\sim1.5\;mm$. The optimal values of the design variables are acquired after the fifth generation and also compared to those of a local optimization algorithm for the same geometry and conditions.

곡선부에서 차륜 마모 저감을 위한 차륜답면 형상 설계 (Design of Wheel Profile to Reduce Wear of Railway Wheel)

  • 최하영;이동형;송창용;이종수
    • 한국정밀공학회지
    • /
    • 제29권6호
    • /
    • pp.607-612
    • /
    • 2012
  • The wear problem of wheel flange occurs at sharp curves of rail. This paper proposes a procedure for optimum design of a wheel profile wherein flange wear is reduced by improving an interaction between wheel and rail. Application of optimization method to design problem mainly depends on characteristics of design space. This paper compared local optimization method with global optimization according to sensitivity value of objective function for design variables to find out which optimization method is appropriable to minimize wear of wheel flange. Wheel profile is created by a piecewise cubic Hermite interpolating polynomial and dynamic performances are analyzed by a railway dynamic analysis program, VAMPIRE. From the optimization results, it is verified that the global optimization method such as genetic algorithm is more suitable to wheel profile optimization than the local optimization of SQP (Sequential Quadratic Programming) in case of considering the lack of empirical knowledge for initial design value.

다성분 공정을 위한 데이터 보정 (Data reconciliation for multicomposition processes)

  • 이무호;한종훈;장근수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.36-39
    • /
    • 1996
  • In chemical processes, measurement errors reduce the credibility of information and cause inconsistency in material and energy balances. Because multicomposition flows and temperature measurements make material and energy balances nonlinear equations, data reconciliation becomes a nonlinear constrained optimization problem. In multicomposition processes, if we follow general optimization procedure, the number of measurement variables is so large that data reconciliation requires much computation time. We propose the decomposition procedure to reduce the computation time without the decrease of accuracy of data reconciliation. Decomposition procedure finds global variables, that can reduce the nonlinearity of constraints, and divides two sub-optimization problems. Once we optimize the global variables at upper level, we can easily optimize the remain variables at tower level, We can obtain the short computational time and the same accuracy as SQP optimization method.

  • PDF

GLOBAL CONVERGENCE OF AN EFFICIENT HYBRID CONJUGATE GRADIENT METHOD FOR UNCONSTRAINED OPTIMIZATION

  • Liu, Jinkui;Du, Xianglin
    • 대한수학회보
    • /
    • 제50권1호
    • /
    • pp.73-81
    • /
    • 2013
  • In this paper, an efficient hybrid nonlinear conjugate gradient method is proposed to solve general unconstrained optimization problems on the basis of CD method [2] and DY method [5], which possess the following property: the sufficient descent property holds without any line search. Under the Wolfe line search conditions, we proved the global convergence of the hybrid method for general nonconvex functions. The numerical results show that the hybrid method is especially efficient for the given test problems, and it can be widely used in scientific and engineering computation.

영역 제거법의 확장을 통한 전체 최적화 알고리듬 개선 (A Global Optimization Algorithm Based on the Extended Domain Elimination Method)

  • 오승환;이병채
    • 대한기계학회논문집A
    • /
    • 제24권1호
    • /
    • pp.240-249
    • /
    • 2000
  • An improved global optimization algorithm is developed by extending the domain elimination method. The concept of triangular patch consists of two or more trajectories of local minimizations is introduced to widen the attraction region of the domain elimination method. Using the an-]c between each of three vertices of the patch and a design point, we measure the proximity, between the design point and the patch. With the Gram-Schimidt orthonormalization, this method can be extended to general n-dimensional problems. We code the original domain elimination algorithm and a patch-based algorithm. Then we compare the performance of two algorithms. Through the well-known example problems. the algorithm using patch is shown to be superior to the original domain elimination algorithm in view of computational efficiency.

직렬-병렬 시스템의 중복 설계 문제의 전역 최적화 해법에 관한 연구 (A Study on A Global Optimization Method for Solving Redundancy Optimization Problems in Series-Parallel Systems)

  • 김재환;유동훈
    • 해양환경안전학회지
    • /
    • 제6권1호
    • /
    • pp.23-33
    • /
    • 2000
  • This paper is concerned with finding the global optimal solutions for the redundancy optimization problems in series-parallel systems related with system safety. This study transforms the difficult problem, which is classified as a nonlinear integer problem, into a 0/1 IP(Integer Programming) by using binary integer variables. And the global optimal solution to this problem can be easily obtained by applying GAMS (General Algebraic Modeling System) to the transformed 0/1 IP. From computational results, we notice that GA(Genetic Algorithm) to this problem, which is, to our knowledge, known as a best algorithm, is poor in many cases.

  • PDF

이항 반응 실험의 확률적 전역최적화 기법연구 (A Study on the Stochastic Optimization of Binary-response Experimentation)

  • 이동훈;황근철;이상일;윤원영
    • 한국시뮬레이션학회논문지
    • /
    • 제32권1호
    • /
    • pp.23-34
    • /
    • 2023
  • 본 논문의 목적은 이항출력 실험을 이용할 경우에 확률적 전역 최적화 방법론들을 검토하고 알고리즘들간의 성능을 비교하기 위한 것이다. 모 성공확률은 알수 없고 확률적 특성을 갖기 때문에 확률적 전역 최적화 방법론에서는 모 성공확률 대신 성공확률의 추정치를 이용한다. 언덕오르기 알고리즘 , 단순랜덤탐색, 랜덤재출발 랜덤탐색, 랜덤 최적화, 담금질 기법 및 군집기반의 알고리즘인 입자 군집 최적화 알고리즘을 확률적 전역 최적화 알고리즘으로 사용하였다. 알고리즘의 비교를 위하여 두가지 테스트 함수(하나는 단봉이고 나머지는 다봉임)가 제안되었고 몬테카를로 시뮬레이션을 이용하여 알고리즘의 성능을 평가하였다. 단순 테스트 함수에 대하여는 모든 알고리즘이 유사한 성능을 보이고 있다. 복잡한 다봉의 테스트 함수에 대하여는 랜덤재출발 랜덤최적화, 담금질 기법과 군집 기반의 입자군집 알고리즘이 훨씬 더 좋은 성능을 보임을 알 수 있다.

다중방향성 정합선 최적화와 신뢰도 기반 공백복원을 이용한 스테레오 정합 (A Stereo Matching Technique using Multi-directional Scan-line Optimization and Reliability-based Hole-filling)

  • 백승해;박순용
    • 정보처리학회논문지B
    • /
    • 제17B권2호
    • /
    • pp.115-124
    • /
    • 2010
  • 최근 스테레오 정합 기술은 정합하고자 하는 픽셀을 포함한 국부적인(local) 영상의 정합 비용과 시차의 변화 비용을 누적하는 전역적(global)인 방법을 많이 사용하고 있다. 특히 전역적 스테레오 정합에서도 비용누적 (cost accumulation)의 방향을 일반적인 수평방향이 아닌 다수의 방향을 사용하는 연구가 늘고 있다. 본 논문에서는 기존의 스테레오 정합 기술을 다중 방향성 정합 기술로 확장하는 방법을 제안한다. 픽셀의 국부적인 정합 비용은 단순한 NCC (Normalized Cross Correlation)를 사용하였고 전역적 정합 기술의 하나인 정합선 최적화(Scan-line Optimization) 방법을 다중 방향으로 확장하는 기술을 제안하였다. 우선 정합선 최적화를 다중 방향으로 실행한 후 이들 결과를 이용하여 신뢰도가 높은 시차영상 (disparity image)을 획득한다. 반복적인 다중 방향 정합선 최적화 시행 후, 시차영상에서 남은 공백은 홀 복원 방법으로 계산한다. 시차가 구해진 픽셀에 대해서는 신뢰도 점수를 매긴 다음 이 점수를 확산하여 신뢰도 점수 테이블에서 가장 높은 값을 가지는 시차값으로 홀을 복원하였다. 제안하는 기술을 미들버리(Middlebury)의 스테레오 영상을 사용하여 오차를 분석하였다. 기존의 전역적 방법과 제안 기술을 이용하여 시차영상을 계산하고 그 오차를 비교하였다.

Effects of Latin hypercube sampling on surrogate modeling and optimization

  • Afzal, Arshad;Kim, Kwang-Yong;Seo, Jae-won
    • International Journal of Fluid Machinery and Systems
    • /
    • 제10권3호
    • /
    • pp.240-253
    • /
    • 2017
  • Latin hypercube sampling is widely used design-of-experiment technique to select design points for simulation which are then used to construct a surrogate model. The exploration/exploitation properties of surrogate models depend on the size and distribution of design points in the chosen design space. The present study aimed at evaluating the performance characteristics of various surrogate models depending on the Latin hypercube sampling (LHS) procedure (sample size and spatial distribution) for a diverse set of optimization problems. The analysis was carried out for two types of problems: (1) thermal-fluid design problems (optimizations of convergent-divergent micromixer coupled with pulsatile flow and boot-shaped ribs), and (2) analytical test functions (six-hump camel back, Branin-Hoo, Hartman 3, and Hartman 6 functions). The three surrogate models, namely, response surface approximation, Kriging, and radial basis neural networks were tested. The important findings are illustrated using Box-plots. The surrogate models were analyzed in terms of global exploration (accuracy over the domain space) and local exploitation (ease of finding the global optimum point). Radial basis neural networks showed the best overall performance in global exploration characteristics as well as tendency to find the approximate optimal solution for the majority of tested problems. To build a surrogate model, it is recommended to use an initial sample size equal to 15 times the number of design variables. The study will provide useful guidelines on the effect of initial sample size and distribution on surrogate construction and subsequent optimization using LHS sampling plan.