IEIE Transactions on Smart Processing and Computing
/
v.3
no.3
/
pp.118-127
/
2014
This paper presents an efficient motion and disparity prediction method for multi-view video coding based on the high efficient video coding (HEVC) standard. The proposed method exploits inter-view candidates for effective prediction of the motion or disparity vector to be coded. The inter-view candidates include not only the motion vectors of adjacent views, but also global disparities across views. The motion vectors coded earlier in an adjacent view were found to be helpful in predicting the current motion vector to reduce the number of bits used in the motion vector information. In addition, the proposed disparity prediction using the global disparity method was found to be effective for interview predictions. A multi-view version based on HEVC was used to evaluate the proposed algorithm, and the proposed correspondence prediction method was implemented on a multi-view platform based on HEVC. The proposed algorithm yielded a coding gain of approximately 2.9% in a high efficiency configuration random access mode.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2009.01a
/
pp.408-412
/
2009
In this paper, a new efficient algorithm for global motion estimation is proposed. This algorithm uses a previous 4-parameter model based global motion estimation algorithm and M-estimator for improving the accuracy and robustness of the estimate. The first algorithm uses the block based motion vector fields and which generates a coarse global motion parameters. And second algorithm is M-estimator technique for getting precise global motion parameters. This technique does not increase the computational complexity significantly, while providing good results in terms of estimation accuracy. In this work, an initial estimation for the global motion parameters is obtained using simple 4-parameter global motion estimation approach. The parameters are then refined using M-estimator technique. This combined algorithm shows significant reduction in mean compensation error and shows performance improvement over simple 4-parameter global motion estimation approach.
Journal of the Institute of Electronics Engineers of Korea SP
/
v.45
no.2
/
pp.37-48
/
2008
Generally, a motion vector and a disparity vector represent the motion information of an object in a single-view of camera and the displacement of the same scene between two cameras that located spatially different from each other, respectively. Conventional H.264/AVC does not use the disparity vector in the motion vector prediction because H.264/AVC has been developed for the single-view video. But, multi-view video coding that uses the inter-view prediction structure based on H.264/AVC can make use of the disparity vector instead of the motion vector when the current frame refers to the frame of different view. Therefore, in this paper, we propose an improved motion/disparity vector prediction method that consists of global disparity vector replacement and extended neighboring block prediction. From the experimental results of the proposed method compared with the conventional motion vector prediction of H.264/AVC, we achieved average 1.07% and 1.32% of BD (Bjontegaard delta)-bitrate saving for ${\pm}32$ and ${\pm}64$ of global vector search range, respectively, when the search range of the motion vector prediction is set to ${\pm}16$.
In this paper, we propose a new algorithm that is robust against the effects of objects that are relatively unaffected by camera motion and can accurately detect camera motion even in high resolution images. First, for more accurate camera motion detection, a global motion filter based on entropy of a motion vector is used to distinguish the background and the object. A block matching algorithm is used to find exact motion vectors. In addition, a matched filter with the angle of the ideal motion vector of each block is used. Motion vectors including 4 kinds of diagonal direction, zoom in, and zoom out are added additionally. The experiment shows that the precision, recall, and accuracy of camera motion detection compared to the recent results is improved by 12.5%, 8.6% and 9.5%, respectively.
Latest digital cinema is getting more interest on recent days. The combination of visually immersive 3D movie with chair movements and other physical effects has added more enjoyment. The movement of the chair is controlled manually in these digital cinemas. By the analysis of the digital cinema's video sequences, movement of the chair can be controlled automatically. In the proposed method first of all the motion of focused object and the background is identified and then the motion vector information is extracted by using the 9-search range. The motion vector is determined only for the movement of background while the object is stationary. The extracted Motion information from the digital cinemas is used for the movement control of the chair. The experimental results show that the proposed method outperforms the existing methods in terms of accuracy.
Recently, a lot of images containing various global movements have been generated by the activation of the photographic equipment such as the drone and the action cam. In this case, when the motion such as rotation, scaling is generated, it is difficult to expect a high coding efficiency in the conventional inter-picture prediction method using the 2D motion vector. In this paper, we propose a video coding method that reflects global motion through homography reference pictures. As a proposed method, there are 1) a method of generating a new reference picture by grasping a global motion relation between a current picture and a reference picture by homography, and 2) a method of utilizing a homography reference picture for inter-picture prediction. The experiment was applied to the HEVC reference software HM 14.0, and the experimental result showed an increase in encoding efficiency of 6.6% based on RA. Especially, the results using the videos with rotational motion have a maximum coding efficiency of 32.6%, which is expected to show high efficiency in video, which is often represented by complex global motion such as drones.
We propose a block motion estimation algorithm based on a statistical image feature for video sequences. The statistical feature of the reference block is obtained, then applied to select the candidate starting points (SPs) in the regular starting points pattern (SPP) by comparing the statistical feature of reference block with that of blocks which are spread ower regular SPP. The final SPs are obtained by their Mean Absolute Difference(MAD) value among the candidate SPs. Finally, one of conventional fast search algorithms, such as BRGDS, DS, and three-step search (TSS), has been applied to generate the motion vector of reference block using the final SPs as its starting points. The experimental results showed that the starting points from fine SPs were as dose as to the global minimum as we expected.
Moving objects in video data are main elements for video analysis and retrieval. In this paper, we propose a new algorithm for tracking and segmenting moving objects in color image sequences that include complex camera motion such as zoom, pan and rotating. The Proposed algorithm is based on the Mean-shift color segmentation and stochastic region matching method. For segmenting moving objects, each sequence is divided into a set of similar color regions using Mean-shift color segmentation algorithm. Each segmented region is matched to the corresponding region in the subsequent frame. The motion vector of each matched region is then estimated and these motion vectors are summed to estimate global motion. Once motion vectors are estimated for all frame of video sequences, independently moving regions can be segmented by comparing their trajectories with that of global motion. Finally, segmented regions are merged into the independently moving object by comparing the similarities of trajectories, positions and emerging period. The experimental results show that the proposed algorithm is capable of segmenting independently moving objects in the video sequences including complex camera motion.
Journal of the Institute of Convergence Signal Processing
/
v.5
no.2
/
pp.96-105
/
2004
The recovering 3D image from 2D requires the depth information for each picture element. The manual creation of those 3D models is time consuming and expensive. The goal in this paper is to estimate the relative depth information of every region from single view image with camera translation. The paper is based on the fact that the motion of every point within image which taken from camera translation depends on the depth. Motion vector using full-search motion estimation is compensated for camera rotation and zooming. We have developed a framework that estimates the average frame depth by analyzing motion vector and then calculates relative depth of region to average frame depth. Simulation results show that the depth of region belongs to a near or far object is consistent accord with relative depth that man recognizes.
The Journal of Korean Institute of Communications and Information Sciences
/
v.38A
no.2
/
pp.164-173
/
2013
In this paper, we propose multi-frame based super resolution algorithm by using motion vector normalization and edge pattern analysis. Existing algorithms have constraints of sub-pixel motion and global translation between frames. Thus, applying of algorithms is limited. And single-frame based super resolution algorithm by using discrete wavelet transform which robust to these problems is proposed but it has another problem that quantity of information for interpolation is limited. To solve these problems, we propose motion vector normalization and edge pattern analysis for 2*2 block motion estimation. The experimental results show that the proposed algorithm has better performance than other conventional algorithms.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.