• Title/Summary/Keyword: Global configuration

Search Result 252, Processing Time 0.019 seconds

Development of Door Trim Assembly System base on Digital Manufacturing Technology (디지털 제조기술 지원 도어트림 조립시스템 개발)

  • Park, Hong-Seok;Mun, Si-Hwan;Park, Sang-Kil;Choi, Hong-Won;Shin, Sang-Jong;Cha, Suk-Keun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.14 no.4
    • /
    • pp.242-253
    • /
    • 2009
  • Nowadays, manufacturing industry has been making its effort not only for productivity elevation but also for cost reduction in order to survive in the global market which is more and more challenging. In this paper, the method for planning of digital manufacturing system is proposed and door trim assembly system is determined as the subject of our research. First of all, the process sequence is generated based on the product analysis. And, the static and dynamic relationships between system components are represented using IDEF0 and UML model. The working time is estimated through the regression analysis based on MODAPTS method. According to the system configuration strategy, initial concept system layout is implemented 3D virtual environment. The problems caused by bad working motions are detected and modified through the ergonomic analysis using RULA method. According to proposed procedure, digital door trim assembly system is implemented in DLEMIA.

A Review on the DACS Design from the Perspective of Flight Performance Requirements (비행성능 요구 관점에서 DACS 형상 설계에 관한 고찰)

  • Park, Iksoo;Jin, Jungkun;Ha, Dongsung;Lim, Seongtaek
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.358-363
    • /
    • 2017
  • The high intercept probability depends on optimization of the system, which consists of target detection, tracking system, missile system and so on. To reduce the complexity of global optimization of the system performance, simplification of the relative dependances of each sub-system is done and design parameters for DACS configuration are identified. The conceptual design process is addressed based on the requirement of the design parameters and new methodology is suggested for higher performance.

  • PDF

Performance and Internal Flow of a Cross-Flow Type Hydro Turbine for Wave Power Generation (파력발전용 횡류형 수력터빈의 성능 및 내부유동)

  • Choi, Young-Do;Cho, Young-Jin;Kim, You-Taek;Lee, Young-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.3
    • /
    • pp.22-29
    • /
    • 2008
  • Clean and renewable energy technologies using ocean energy give us non-polluting alternatives to fossil and nuclear-fueled power plants to meet establishment of countermeasures against the global warming and growing demand for electrical energy. Among the ocean energy resources, wave power takes a growing interest because of its enormous amount of potential energy in the world. Therefore, various types of wave power conversion system to capture the energy of ocean waves have been developed. However, suitable turbine type is not normalized yet because of relatively low efficiency of the turbine systems. The purpose of this study is to investigate the internal flow and performance characteristics of a cross-flow type hydro turbine, which will be built in a caisson for wave power generation. Numerical simulation using a commercial CFD code is conducted to clarify the effects of the turbine rotation speed and flow rate variation on the turbine characteristics. The results show that the output power of the cross-flow type hydro turbine with symmetric nozzle shape is obtained mainly from Stage 2. Turbine inlet configuration should be designed to obtain large amount of flow rate because the static pressure and absolute tangential velocity are influenced considerably by inlet flow rate.

Comparative assessment of seismic rehabilitation techniques on a full scale 3-story RC moment frame structure

  • Di Ludovico, M.;Balsamo, A.;Prota, A.;Manfredi, G.
    • Structural Engineering and Mechanics
    • /
    • v.28 no.6
    • /
    • pp.727-747
    • /
    • 2008
  • In the framework of the SPEAR (Seismic PErformance Assessment and Rehabilitation) research Project, an under-designed three storey RC frame structure, designed to sustain only gravity loads, was subjected, in three different configurations 'as-built', Fiber Reinforced Polymer (FRP) retrofitted and rehabilitated by reinforced concrete (RC) jacketing, to a series of bi-directional pseudodynamic (PsD) tests under different values of peak ground acceleration (PGA) (from a minimum of 0.20g to a maximum of 0.30g). The seismic deficiencies exhibited by the 'as-built' structure after the test at PGA level of 0.20g were confirmed by a post - test assessment of the structural seismic capacity performed by a nonlinear static pushover analysis implemented on the structure lumped plasticity model. To improve the seismic performance of the 'as-built' structure', two rehabilitation interventions by using either FRP laminates or RC jacketing were designed. Assumptions for the analytical modeling, design criteria and calculation procedures along with local and global intervention measures and their installation details are herein presented and discussed. Nonlinear static pushover analyses for the assessment of the theoretical seismic capacity of the structure in each retrofitted configuration were performed and compared with the experimental outcomes.

Three-Dimensional Analysis on Induction Port and In-cylinder Flow for Various Valve Lifts in an SI Engine (SI 엔진의 밸브 리프트에 따른 흡입 포트 및 실린더내 정상 3차원 유동장 해석)

  • Kim, Y.N.;Lee, K.H.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.5
    • /
    • pp.82-89
    • /
    • 1995
  • The three-dimensional fluid motion through the intake port and cylinder of a single DOHC SI engine was investigated with a commercial computational fluid dynamics simulation program, STAR-CD. This domain includes the intake port, intake valves and combustion chamber. Steady induction port flows for various valve lifts have been simulated for an actual engine configuration. The geometry was obtained by direct interface with a three-dimensional CAD software for complicated port and valve shape. The computational grid was generated using the commercial preprocessor ICEM CFD/CAE. Detailed procedures were presented on the generation of the geometry and the block-structured mesh. A standard k-${\varepsilon}$ turbulent model was applied to consider the complexity of the geometry and the fluid motion. The global flow patterns and the distributions of various quantities, such as pressure, velocity magnitude around the valve seat etc., were examined. The computational results, such as mass flow rate, discharge coefficient etc., for various valve lifts were compard with the experimental results and the computational results were found in good agreement with the experiment.

  • PDF

The Development of Information Science in Ibero-America

  • Araujo, Carlos Alberto Avila
    • Journal of Information Science Theory and Practice
    • /
    • v.7 no.4
    • /
    • pp.6-19
    • /
    • 2019
  • The purpose of this article is to problematize the existence of a possible Ibero-American informational thinking. It was initially observed that a relative absence of Ibero-America in the international presentations and mappings of information science exists. Below, the reality of the 22 countries that compose Ibero-America is discussed, a region that can be understood from a sociocultural and geopolitical perspective. Then, a mapping of the information science research in these countries is made. The main research topics found are: epistemological studies, relationships with library science, information literacy, representation and organization, bibliometric studies, information management, user studies, technological dimensions, and relationships with archival science and museum studies. Finally, a general epistemological configuration of information science is presented at a global level, highlighting the great trends of study of information that marked the decades of the 1960s and 1970s (physical model), 1980s and 1990s (cognitive model), and the 21st century (sociocultural model), and which manifested themselves in the different subareas that make up the field. The most recent research in information science, in addition to addressing information transfer (physical dimension) and its relationship with data and knowledge (cognitive dimension), has also incorporated aspects related to the social effects of information, its role in the constitution of identities and culture, and the importance of its material conformations. Such expansion reflects attempts to address the complexity of informational phenomena. Therefore, it is concluded that it is important to place the specific contributions of Ibero-America in this context.

Performance Analysis of the GPS Receiver System under Electromagnetic Test of the KSL V-I Upper-stage (KSLV-I 상단조립체의 전자파시험에서 GPS 수신기 시스템의 성능분석)

  • Moon, Ji-Hyeon;Kwon, Byung-Moon;Shin, Yong-Sul;Choi, Hyung-Don
    • Aerospace Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.161-169
    • /
    • 2008
  • This paper introduces test configuration and operation method for the GPS receiver system under electromagnetic test of KSLV-I upper-stage as a system qualification level and describes performance analysis of the test results. The GPS receiver system has clearly passed the electromagnetic test specifications of component level which is based on MIL-STD-461E through several design changes. Under electromagnetic test as a system qualification level, the GPS receiver system normally operates in spite of electromagnetic interferences with other systems. Performance of the GPS receiver system is also, not degraded on the condition of electromagnetic field incidence and electrostatic discharge. The KSLV-I GPS receiver system, as a result, is verified on the electromagnetic condition of the KSLV-I upper-stage.

  • PDF

Design validation of a composite crash absorber energy to an emergency landing

  • Guida, Michele;Marulo, Francesco;Bruno, Massimiliano;Montesarchio, Bruno;Orlando, Salvatore
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.3
    • /
    • pp.319-334
    • /
    • 2018
  • In this study, the failure mode and energy absorption capabilities of a composite shock absorber device, during an emergency landing are evaluated. The prototype has been installed and tested in laboratory simulating an emergency landing test condition. The crash absorber presents an innovative configuration able to reduce the loads transmitted to a helicopter fuselage during an emergency landing. It consists of a composite tailored tube installed on the landing gear strut. During an emergency landing this crash absorber system should be able to absorb energy through a pre-designed deformation. This solution, compared to an oleo-pneumatic shock absorber, avoids sealing checks, very high values of the shock absorber pressure, and results to be lighter, easy in maintenance, inspect and use. The activities reported in this paper have become an attractive research field both from the scientific viewpoint and the prospect of industrial applications, because they offer benefits in terms of energy absorbing, weight savings, increasing the safety levels, and finally reducing the costs in a global sense.

Parametric geometric model and shape optimization of an underwater glider with blended-wing-body

  • Sun, Chunya;Song, Baowei;Wang, Peng
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.6
    • /
    • pp.995-1006
    • /
    • 2015
  • Underwater glider, as a new kind of autonomous underwater vehicles, has many merits such as long-range, extended-duration and low costs. The shape of underwater glider is an important factor in determining the hydrodynamic efficiency. In this paper, a high lift to drag ratio configuration, the Blended-Wing-Body (BWB), is used to design a small civilian under water glider. In the parametric geometric model of the BWB underwater glider, the planform is defined with Bezier curve and linear line, and the section is defined with symmetrical airfoil NACA 0012. Computational investigations are carried out to study the hydrodynamic performance of the glider using the commercial Computational Fluid Dynamics (CFD) code Fluent. The Kriging-based genetic algorithm, called Efficient Global Optimization (EGO), is applied to hydrodynamic design optimization. The result demonstrates that the BWB underwater glider has excellent hydrodynamic performance, and the lift to drag ratio of initial design is increased by 7% in the EGO process.

Network Arrangements Underlying Strategic Corporate Social Responsibility: Findings from Globalized Cyberspace and Lessons for Asian Regions

  • Choi, Jin-A;Park, Sejung;Lim, Yon Soo;Nam, Yoonjae;Nam, Inyong;Park, Han Woo
    • Journal of Contemporary Eastern Asia
    • /
    • v.20 no.2
    • /
    • pp.19-34
    • /
    • 2021
  • The purpose of this study is to introduce a synergetic configuration of stakeholders, especially government and university, into the corporate social responsibility strategy. The alignment of a company's CSR efforts with its business practices and values must be communicated strategically for effective and successful business outcomes. Therefore, the proposed process of CSR evaluation takes into account the three helices of the Triple-Helix perspective, university, industry, and government (UIG), and investigates how involvement in the Triple Helix actors influence corporations with CSR initiatives. Specifically, whether the public's awareness of a corporation's CSR activities is heightened by the concurrent support of the three helixes will be examined. We propose a methodology that enables corporations to determine effective levels of integration with government and educational institutions. The intensity of Triple-Helix indicators will be examined.