• Title/Summary/Keyword: Global Satellite navigation system

Search Result 541, Processing Time 0.025 seconds

Performance Assessment of GBAS Ephemeris Monitor for Wide Faults (Wide Fault에 대한 GBAS 궤도 오차 모니터 성능 분석)

  • Junesol Song;Carl Milner
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.2
    • /
    • pp.189-197
    • /
    • 2024
  • Galileo is a European Global Navigation Satellite System (GNSS) that has offered the Galileo Open Service since 2016. Consequently, the standardization of GNSS augmentation systems, such as Satellite Based Augmentation System (SBAS), Ground Based Augmentation System (GBAS), and Aircraft Based Augmentation System (ABAS) for Galileo signals, is ongoing. In 2023, the European Union Space Programme Agency (EUSPA) released prior probabilities of a satellite fault and a constellation fault for Galileo, which are 3×10-5 and 2×10-4 per hour, respectively. In particular, the prior probability of a Galileo constellation fault is significantly higher than that for the GPS constellation fault, which is defined as 1×10-8 per hour. This raised concerns about its potential impact on GBAS integrity monitoring. According to the Global Positioning System (GPS) Standard Positioning Service Performance Standard (SPS PS), a constellation fault is classified as a wide fault. A wide fault refers to a fault that affects more than two satellites due to a common cause. Such a fault can be caused by a failure in the Earth Orientation Parameter (EOP). The EOP is used when transforming the inertial axis, on which the orbit determination is based, to Earth Centered Earth Fixed (ECEF) axis, accounting for the irregularities in the rotation of the Earth. Therefore, a faulty EOP can introduce errors when computing a satellite position with respect to the ECEF axis. In GNSS, the ephemeris parameters are estimated based on the positions of satellites and are transmitted to navigation satellites. Subsequently, these ephemeris parameters are broadcasted via the navigation message to users. Therefore, a faulty EOP results in erroneous broadcast ephemeris data. In this paper, we assess the conventional ephemeris fault detection monitor currently employed in GBAS for wide faults, as current GBAS considers only single failure cases. In addition to the existing requirements defined in the standards on the Probability of Missed Detection (PMD), we derive a new PMD requirement tailored for a wide fault. The compliance of the current ephemeris monitor to the derived requirement is evaluated through a simulation. Our findings confirm that the conventional monitor meets the requirement even for wide fault scenarios.

The study on the applicability of Galileo system in railway application (철도응용분야에서의 갈릴레오 시스템의 적용방안 연구)

  • Shin, Kyung-Ho;Joung, Eui-Jin;Lee, Jun-Ho;Jeong, Rag-Gyo
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.947-952
    • /
    • 2007
  • EU is in the process of developing a new european global navigation satellite system - Galileo project - which technologies and capitals from member states of EU are put into, after determining to set up a separate GPS against that of US late in the 1990s. Galileo system is commercial global navigation satellite system, which allows other else nations outside of EU to participate in system development and operation, different from GPS. Korea also decided to join in the project on February in 2005. Galileo system provide 5 Services - Open Service, Safety of Life, Commercial Service, Public Regulated Service, Search and Rescue Service, and especially it can be applicable to safety-critical areas, and is to provide its part of services certified. In this paper, we are to compare the services of Galileo system, and to present necessary factors to be considered, and the applicability to use the Galileo system in safety-critical application areas, such as train control system

  • PDF

The Accuracy Analysis of Parcel Surveying by RTK-GPS and RTK-GPS/GLONASS (RTK-GPS와 RTK-GPS/GLONASS에 의한 일필지 측랑의 정확도 분석)

  • Hong, Sung-Eon
    • Spatial Information Research
    • /
    • v.14 no.2 s.37
    • /
    • pp.211-221
    • /
    • 2006
  • GLONASS(Global NAvigation Satellite System) using the satellite information on 19,100km altitude supplies the location information similar method with GPS. Therefore, many researches study in combination GPS and GLONASS. This research compares with deciding coordination of one unit parcel using RTK-GPS and RTK-GPS/CLONASS. Then we examine the possibility of RTK-GPS/GLONASS for determining parcel coordinate.

  • PDF

Development of End-to-end Numerical Simulator for Next Generation GNSS Signal Design

  • Shin, Heon;Han, Kahee;Won, Jong-Hoon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.8 no.4
    • /
    • pp.153-164
    • /
    • 2019
  • This paper presents the development of an end-to-end numerical simulator for signal design of the next generation global navigation satellite system (GNSS). The GNSS services are an essential element of modern human life, becoming a core part of national infra-structure. Several countries are developing or modernizing their own positioning and timing system as their demand, and South Korea is also planning to develop a Korean Positioning System (KPS) based on its own technology, with the aim of operation in 2034. The developed simulator consists of three main units such as a signal generator, a channel unit, and a receiver. The signal generator is constructed based on the actual navigation satellite payload model. For channels, a simple Gaussian channel and land mobile satellite (LMS) multipath channel environments are implemented. A software receiver approach based on a commercial GNSS receiver model is employed. Through the simulator proposed in this paper, it is possible to simulate the entire transceiver chain process from signal generation to receiver processing including channel effect. Finally, numerical simulation results for a simple example scenario is analyzed. The use of the numerical signal simulator in this paper will be ideally suited to design a new navigation signal for the upcoming KPS by reducing the research and development efforts, tremendously.

Development of a Combined GPS/GLONASS PPP Method

  • Choi, Byung-Kyu;Roh, Kyoung-Min;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.3 no.1
    • /
    • pp.31-36
    • /
    • 2014
  • Precise Point Positioning (PPP) is a stand-alone precise positioning approach. As the quality of satellite orbit and clock products from analysis centers has been improved, PPP can provide more precise positioning accuracy and reliability. A combined use of Global Positioning System (GPS) and Global Orbiting Navigation Satellite System (GLONASS) in PPP is now available. In this paper, we explained about an approach for combined GPS and GLONASS PPP measurement processing, and validated the performance through the comparison with GPS-only PPP results. We also used the measurement obtained from the GRAS reference station for the performance validation. As a result, we found that the combined GPS/GLONASS PPP can yield a more precise positioning than the GPS-only PPP.

Performance Evaluation of a Vector-Tracking-Loop for GNSS Jamming Effect Mitigation Under Static and Dynamic Conditions

  • Cheon, Wang-Seong;Ji, Gun-Hoon;Won, Jong-Hoon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.7 no.3
    • /
    • pp.113-125
    • /
    • 2018
  • Since the global positioning system receivers on the surface of the Earth use satellite signals sent from a remote distance and the intensity of received signals is weak, they are vulnerable to jamming. This paper implements a vector-tracking loop (VTL)-based global navigation satellite system (GNSS) receiver algorithm as an anti-jamming technique and compares the performance of VTL-based receivers with that of scalar-tracking loop (STL) that is used in general GNSS receivers at various jamming environments and a vehicle's dynamics. The simulation results shows that VTL is more robust against jamming than STL in all operating environments.

Korean Satellite Based Augmentations System (한국형 위성기반 항법보강시스템)

  • Park, Jae-U;Lee, Yong-Min
    • Journal of Satellite, Information and Communications
    • /
    • v.1 no.1
    • /
    • pp.48-53
    • /
    • 2006
  • A K-SBAS (Korean Satellite Based Augmentation System) is proposed as one of the space infrastructure. The proposed system considers the existed elements to the utmost for the most economical SBAS construction. As reference system the current DGPS (differential global positioning system) network is investigated. Space segment is investigated based on the COMS-1 (Communications, Oceanographic, and Meteorological Satellite-1). While bus system of COMS-1 can be kept to minimum change, the communication payload of needed, crucial parts such as software, man power can be easily secured through the DGPS network operation heritage.

  • PDF

Analysis of Positioning Accuracy Using LX GNSS Network RTK (LX 위성측위 인프라기반 네트워크 RTK를 이용한 측위성능 분석)

  • Ha, Jihyun;Kim, Hyun-ho;Jung, Wan-seok
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.6
    • /
    • pp.507-514
    • /
    • 2015
  • The Spatial information research institute of the LX Korea land and geospatial informatix corporation manages infrastructure for the LX global navigation satellite system (GNSS), which comprises 30 monitoring stations nationwide. Since 2014, it has conducted network real-time kinematic (RTK) tests using the master-auxiliary concept (MAC). This study introduces the infrastructure of LX GNSS and presents the results of a performance analysis of the LX RTK service. The analysis was based on a total of 25 cadastral topographic control points in Jeonju, Seoul, and Incheon. For each point, performance was measured over one observation, two repeated observations, and five repeated observations. The measurements obtained from LX MAC and the VRS of the National Geographic Information Institute were compared with the announced coordinates derived from cadastral topographic control points. As a result, the two systems were found to have similar performance with average error and standard deviation differing only by 1 to 2 cm.

Trend in utilization of Global Navigation Satellite System for diseases and E-health (질병 및 E-health에 대한 위성항법시스템 활용 동향)

  • Tae-Yun Kim;Jung-Min Joo;Jeong-Hyun Hwang;Suk-Seung Hwang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.3
    • /
    • pp.545-554
    • /
    • 2023
  • In modern industry, the Global Navigation Satellite System(GNSS) is utilized in various fields, where PNT information (P: Positioning, N: Navigation, T: Timing) is always provided and the accurate location estimation based on PNT information is required. In particular, in order to prevent the infection and the spread of the COVID-19 pandemic situation that began in 2019, the precise GNSS technology and various supporting techniques have been used, and, with active quarantine and efforts for the infection spread restrain around the world, we are facing the transition to an endemic situation. In fields of disease and E-health, the location information of users is absolutely necessary to track and monitor infectionous diseases and provide remote medical services, and GNSS plays a leading role in providing the accurate location information. This paper presents investigation results on the up-to-date research trends in which GNSS technologies are employed in the field of disease and E-health, and analyzes the results.

Performance Analysis of Zonotope Shadow Matching Algorithm According to Various Urban Environments (다양한 도심 환경에 따른 ZSM 알고리즘의 성능 분석)

  • Sanghyun Kim;Jiwon Seo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.3
    • /
    • pp.215-220
    • /
    • 2024
  • In urban areas, signals can be blocked and reflected by buildings, reducing the reliability of global navigation satellite systems (GNSS). To address this, the zonotope shadow matching (ZSM) algorithm has been proposed to estimate the set-valued receiver position by calculating the GNSS shadow based on the zonotope. However, the existing study only analyzed the performance of ZSM in dense urban areas where GNSS shadows occur frequently, and the performance analysis in various urban environments was insufficient. Therefore, in this paper, we analyzed the performance of the ZSM algorithm in four urban environments with different characteristics. The results showed that the receiver position estimation performance of ZSM was relatively poor in environments where buildings were not densely populated, and the performance of ZSM was shown to be effective in urban environments with narrow roads and tall buildings.