• Title/Summary/Keyword: Global Satellite navigation system

Search Result 541, Processing Time 0.023 seconds

Ionospheric TEC Monitoring over Jeju Island using the Chinese BeiDou Satellite Navigation System

  • Choi, Byung-Kyu;Lee, Woo Kyoung;Sohn, Dong-Hyo;Yoo, Sung-Moon;Roh, Kyoung-Min;Joo, Jung-Min;Heo, Moon Beom
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.1
    • /
    • pp.1-6
    • /
    • 2020
  • The Chinese BeiDou Satellite Navigation System consists of three kinds of constellations: the geostationary Earth orbit (GEO), the inclined geosynchronous satellite orbit (IGSO), and the medium Earth orbit (MEO). The BeiDou has expanded its service coverage from regional to global. Recently, the BeiDou has been widely used in ionospheric total electron content (TEC) research. In this study, we analyzed the BeiDou signals for ionospheric TEC monitoring over Jeju Island in South Korea. The BeiDou GEO TEC showed a clear pattern of diurnal variations. In addition, we compared the TEC values from the BeiDou GEO, the BeiDou IGSO, GPS, and International GNSS Service (IGS) Global Ionosphere Maps (GIM). There was a difference of about 5 TEC units between the BeiDou GEO and the IGS GIM. This may be due to the altitude difference between the different navigation satellites.

Performance Analysis of GPS and QZSS Orbit Determination using Pseudo Ranges and Precise Dynamic Model (의사거리 관측값과 정밀동역학모델을 이용한 GPS와 QZSS 궤도결정 성능 분석)

  • Beomsoo Kim;Jeongrae Kim;Sungchun Bu;Chulsoo Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.6
    • /
    • pp.404-411
    • /
    • 2022
  • The main function in operating the satellite navigation system is to accurately determine the orbit of the navigation satellite and transmit it as a navigation message. In this study, we developed software to determine the orbit of a navigation satellite by combining an extended Kalman filter and an accurate dynamic model. Global positioning system (GPS) and quasi-zenith satellite system (QZSS) orbit determination was performed using international gnss system (IGS) ground station observations and user range error (URE), a key performance indicator of the navigation system, was calculated by comparison with IGS precise ephemeris. When estimating the clock error mounted on the navigation satellite, the radial orbital error and the clock error have a high inverse correlation, which cancel each other out, and the standard deviations of the URE of GPS and QZSS are small namely 1.99 m and 3.47 m, respectively. Instead of estimating the clock error of the navigation satellite, the orbit was determined by replacing the clock error of the navigation message with a modeled value, and the regional correlation with URE and the effect of the ground station arrangement were analyzed.

Long Short-Term Memory Network for INS Positioning During GNSS Outages: A Preliminary Study on Simple Trajectories

  • Yujin Shin;Cheolmin Lee;Doyeon Jung;Euiho Kim
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.2
    • /
    • pp.137-147
    • /
    • 2024
  • This paper presents a novel Long Short-Term Memory (LSTM) network architecture for the integration of an Inertial Measurement Unit (IMU) and Global Navigation Satellite Systems (GNSS). The proposed algorithm consists of two independent LSTM networks and the LSTM networks are trained to predict attitudes and velocities from the sequence of IMU measurements and mechanization solutions. In this paper, three GNSS receivers are used to provide Real Time Kinematic (RTK) GNSS attitude and position information of a vehicle, and the information is used as a target output while training the network. The performance of the proposed method was evaluated with both experimental and simulation data using a lowcost IMU and three RTK-GNSS receivers. The test results showed that the proposed LSTM network could improve positioning accuracy by more than 90% compared to the position solutions obtained using a conventional Kalman filter based IMU/GNSS integration for more than 30 seconds of GNSS outages.

Study of Quasi Zenith Satellite Orbit and Navigation Messages (준천정 위성 궤도 특성 및 항법정보 연구)

  • Kim, Jeong-Rae
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.15 no.1
    • /
    • pp.11-17
    • /
    • 2007
  • One of the key elements for developing GNSS (Global Navigation Satellite Systems) is the comprehensive analysis of GNSS satellite orbit including the capabilities to generate precision navigation message. The orbit characteristics of Japan's own GNSS system, called QZSS (Quasi Zenith Satellite System) is analyzed and its navigation message, which includes orbit elements and correction terms, is investigated. QZSS-type orbit simulations were performed using a precision orbit integrator in order to analyze the effect of perturbation forces, e.g. gravity, Moon, Sun, etc., on the orbit variation. A preliminary algorithm for creating orbit element corrections was developed and its accuracy is evaluated with the simulation data.

  • PDF

Design and Algorithm Verification of Precision Navigation System (정밀항법 시스템 설계 및 알고리즘 검증)

  • Jeong, Seongkyun;Kim, Taehee;Lee, Jae-Eun;Lee, Sanguk
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.21 no.1
    • /
    • pp.8-14
    • /
    • 2013
  • As GNSS(Global Navigation Satellite System) is used in various filed, many countries establish GNSS system independently. But GNSS system has the limitation of accuracy and stability in stand-alone mode, because this system has error elements which are ionospheric delay, tropospheric delay, orbit ephemeris error, satellite clock error, and etc. For overcome of accuracy limitation, the DGPS(Differential GPS) and RTK(Real-Time Kinematic) systems are proposed. These systems perform relative positioning using the reference and user receivers. ETRI(Electronics and Telecommunications Research Institute) is developing precision navigation system in point of extension of GNSS usage. The precision navigation system is for providing the precision navigation solution to common users. If this technology is developed, GNSS system can be used in the fields which require precision positioning and control. In this paper, we introduce the precision navigation system and perform design and algorithm verification.

Integrity, Orbit Determination and Time Synchronisation Algorithms for Galileo

  • Merino, M.M. Romay;Medel, C. Hernandez;Piedelobo, J.R. Martin
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.9-14
    • /
    • 2006
  • Galileo is the European Global Navigation Satellite System, under civilian control, and consists on a constellation of medium Earth orbit satellites and its associated ground infrastructure. Galileo will provide to their users highly accurate global positioning services and their associated integrity information. The elements in charge of the computation of Galileo navigation and integrity information are the OSPF (Orbit Synchronization Processing Facility) and IPF (Integrity Processing Facility), within the Galileo Ground Mission Segment (GMS). Navigation algorithms play a key role in the provision of the Galileo Mission, since they are responsible for computing the essential information the users need to calculate their position: the satellite ephemeris and clock offsets. Such information is generated in the Galileo Ground Mission Segment and broadcast by the satellites within the navigation signal, together with the expected a-priori accuracy (SISA: Signal-In-Space Accuracy), which is the parameter that in fault-free conditions makes the overbounding the predicted ephemeris and clock model errors for the Worst User Location. In parallel, the integrity algorithms of the GMS are responsible of providing a real-time monitoring of the satellite status with timely alarm messages in case of failures. The accuracy of the integrity monitoring system is characterized by the SISMA (Signal In Space Monitoring Accuracy), which is also broadcast to the users through the integrity message.

  • PDF

Trends of Open PPP/PPP-RTK Correction Services (Open PPP/PPP-RTK 보정정보 서비스 동향)

  • Cheolsoon Lim;Yongrae Jo;Yebin Lee;Yunho Cha;Byungwoon Park;Dookyung Park;Seungho Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.6
    • /
    • pp.418-426
    • /
    • 2022
  • Unlike OSR(observation space representation), the SSR(state space representation) augmentation system is suitable for a one-way broadcasting service because it provides the same corrections to all users in the service area. Due to this advantage, several GNSS(global navigation system) systems such as Galileo, BDS(beidou navigation satellite system), QZSS(quasi zenith satellite system) are establishing PPP (precise point positioning)/PPP-RTK precision positioning services based on SSR messages. Therefore, in this paper, we try to understand the trends of satellite-based PPP/PPP-RTK correction services by analyzing the system configurations, characteristics, and precise positioning performance of satellite-based SSR correction broadcasting services.

Performance Analysis of WADGPS System for Improving Positioning Accuracy

  • So, Hyoungmin;Jang, Jaegyu;Lee, Kihoon;Park, Junpyo;Song, Kiwon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.5 no.1
    • /
    • pp.21-28
    • /
    • 2016
  • The Wide Area Differential Global Positioning System (WADGPS) that uses a number of Global Navigation Satellite System (GNSS) reference stations are implemented with various types and provide services as it can service a wide range of areas relatively. This paper discusses a constellation design of reference stations and performance analysis of the WADGPS. It presented performance results of static and dynamic users when wide area correction algorithm was applied using eight reference stations.

Analysis for Influence and Geometry of GPS/Galileo System (GPS/Galileo 시스템의 기하구조 및 영향 분석)

  • Lee Jae-One
    • Journal of Navigation and Port Research
    • /
    • v.29 no.8 s.104
    • /
    • pp.763-770
    • /
    • 2005
  • Global Navigation Satellite System (GNSS) has become an indispensable tool for providing precise position, velocity and time information for many applications like traditional surveying and navigation etc. However, Global Positioning System (GPS), which was developed and is maintained and operated by the U.S. Department of Defence (DoD), has monopolized the world industry and market, and hence there exists the situation that most of GNSS users absolutely depend upon the GPS. In order to overcome the monopoly, some countries, such as Russia, Japan and European Union (EU), have developed their own GNSSs, so-called GLONASS, JRANS and Galileo systems. Among them, the most prospective system in near future is EU's Galileo system scheduled to launch in 2008. This research has focused on the next generation GNSS system based on GPS and Gralileo system with developing a GNSS simulation software, named as GIMS2005, which generates and analyzes satellite constellation and measurements. Based on the software, a variety of simulation tests have been carried out to recognize limits of GPS-only system and potential benefits of integrated GPS/Galileo positioning. Geometry simulation results have showed that comparing with GPS-only case, the number qf visual satellites, Dilution of Precision (DOP) values, internal reliabilities and external reliabilities.

Vehicle Navigation using Carrier Phase of GPS/GLONASS (GPS/GLONASS의 반송파 위상을 이용한 차량항법)

  • Lee, In-Su;Lee, Yong-Hee;Moon, Du-Youl;Son, Young-Dong
    • Journal of Navigation and Port Research
    • /
    • v.26 no.3
    • /
    • pp.303-310
    • /
    • 2002
  • Nowadays, the combined land navigation system using GPS(Global Positioning System) and DR(Deduced Reckoning), etc. has been used. Although GPS is popular with the land navigation system, this is not useful for the kinematic positioning of the vehicles in the urban canyon because of its few satellites. Thus, this study deals with the kinematic positioning of the vehicles with the combined GPS/GLONASS(GLObal Navigation Satellite System) to compliment the drawbacks of GPS. So the kinematic positioning of the vehicles can be performed constantly by the combined GPS/GLONASS based on the high acquisition rate of data with the help of GLONASS despite of many obstacles and few satellites tracked in the test sites. Consequently, the combined GPS/GLONASS can be applicable to the control of traffic flow and the effective management of read system.