• 제목/요약/키워드: Global Navigation Satellite Systems(GNSS)

검색결과 138건 처리시간 0.026초

TMBOC과 CBOC 신호에 적합한 모호성이 낮은 다중경로 오차완화 기법 (An Unambiguous Multipath Error Mitigation Scheme for TMBOC and CBOC Signals)

  • 유승수;지규인;김선용
    • 제어로봇시스템학회논문지
    • /
    • 제18권10호
    • /
    • pp.977-987
    • /
    • 2012
  • One of the most significant errors in the pseudo-range measurement performance of GNSSes (Global Navigation Satellite Systems) is their multipath error for high-precision applications. Several schemes to mitigate this error have been studied. Most of them, however, have been focused on the GPS (Global Positioning System) L1 C/A (Coarse/Acquisition) signal that was designed in the 1970s and is still being used for civil navigation. Recently, several modernized signals that were especially conceived to more significantly mitigate multipath errors have been introduced, such as Time Multiplexed and Composite Binary Offset Carrier (TMBOC and CBOC, respectively) signals. Despite this advantage, however, a problem remains with the use of TMBOC and CBOC modulations: the ambiguity of BOC (Binary Offset Carrier)-modulated signal tracking. In this paper, a novel unambiguous multipath error mitigation scheme for these modernized signals is proposed. The proposed scheme has the same complexity as HRCs (High Resolution Correlators) but with low ambiguity. The simulation results showed that the proposed scheme outperformed or performed at par with the HRC in terms of their multipath error envelopes and running averages in the static and statistical channel models. The ranging error derived by the mean multipath error of the proposed scheme was below 1.8 meters in an urban area in the statistical channel model.

AI 및 IoT에 대한 위성항법시스템 활용 동향 (Trends in Utilizing Satellite Navigation Systems for AI and IoT)

  • 박희선;주정민;황석승
    • 한국전자통신학회논문지
    • /
    • 제18권5호
    • /
    • pp.761-768
    • /
    • 2023
  • 4차 산업혁명에서 AI(Artificial Intelligence)와 IoT(Internet of Things) 기술은 다양한 분야에서 혁신적으로 활용되고 있으며, 특히 자산 관리, 재해 관리, 기상 관측 분야에서의 성장세가 돋보인다. 이러한 분야에서는 실시간으로 대상의 위치와 상태를 정확히 파악하고, 기존 센서로 감지하기 어려운 상황에서도 다양한 데이터를 수집할 필요가 있다. 이를 위해 위성항법시스템 기술의 활용이 필수적이며, 이 기술을 통해 자산의 효율적인 관리, 재해 예방 및 대응, 정확한 기상 상황 예측 등이 가능하다. 본 논문은 AI 또는 IoT를 접목한 다양한 분야 중 자산관리, 재난 관리, 기상 관측 분야에서 위성항법시스템 기술이 적용된 최신 동향을 조사한 결과를 제시하고 분석한다.

실시간 동적 위성항법을 위한 단일차분 위치영역 Hatch 필터의 설계 (Designing Single-Differenced Position-Domain Hatch Filter for Real-Time Kinematic GNSS)

  • 이형근;;지규인
    • 한국항공우주학회지
    • /
    • 제33권7호
    • /
    • pp.59-69
    • /
    • 2005
  • 본 논문에서는 위상평활화코드 기법에 기반한 실시간 동적 차분위성항법의 효율적인 구현을 위하여 위치영역 Hatch 필터를 새로이 제안하고 그 성능을 분석하였다. 제안된 위치영역 Hatch 필터는 기존의 거리영역 Hatch를 새로운 각도에서 해석하고 이를 연장하여 유도되었다. 시뮬레이션을 통하여 Hatch 이득이 Kalman 형 이득보다 더 효율적이며 또한 위성의 출몰이 빈번한 환경에서는 위치영역 Hatch 필터가 거리영역 Hatch 필터보다 유리함을 보였다.

차로 구분이 가능한 정밀전자지도의 성능 요구사항에 관한 연구 (A Study on the Performane Requirement of Precise Digital Map for Road Lane Recognition)

  • 강우용;이은성;이건우;박재익;최광식;허문범
    • 제어로봇시스템학회논문지
    • /
    • 제17권1호
    • /
    • pp.47-53
    • /
    • 2011
  • To enable the efficient operation of ITS, it is necessary to collect location data for vehicles on the road. In the case of futuristic transportation systems like ubiquitous transportation and smart highway, a method of data collection that is advanced enough to incorporate road lane recognition is required. To meet this requirement, technology based on radio frequency identification (RFID) has been researched. However, RFID may fail to yield accurate location information during high-speed driving because of the time required for communication between the tag and the reader. Moreover, installing tags across all roads necessarily incurs an enormous cost. One cost-saving alternative currently being researched is to utilize GNSS (global navigation satellite system) carrierbased location information where available. For lane recognition using GNSS, a precise digital map for determining vehicle position by lane is needed in addition to the carrier-based GNSS location data. A "precise digital map" is a map containing the location information of each road lane to enable lane recognition. At present, precise digital maps are being created for lane recognition experiments by measuring the lanes in the test area. However, such work is being carried out through comparison with vehicle driving information, without definitions being established for detailed performance specifications. Therefore, this study analyzes the performance requirements of a precise digital map capable of lane recognition based on the accuracy of GNSS location information and the accuracy of the precise digital map. To analyze the performance of the precise digital map, simulations are carried out. The results show that to have high performance of this system, we need under 0.5m accuracy of the precise digital map.

KASS 비행시험 및 검사 시 고려사항 분석 (Considerations on In-Flight Validation for KASS)

  • 구본수;이은성;남기욱;강재민;조정호;홍교영
    • 한국항행학회논문지
    • /
    • 제19권3호
    • /
    • pp.175-181
    • /
    • 2015
  • 최근 운항경로 단축, 연료 절감, 운항시간 지연 축소, 항로 수용력 증대 등의 공역 혼잡해소 및 미래수요 대처에 대한 방안수립이 요구되어지고 있으나, 현재의 재래식 항행시설장비만으로는 한계가 있어 GNSS를 이용한 위성항법 광역보강시스템인 SBAS(satellite based augmentation system)가 고려되어지고 있다. ICAO는 2025년부터 SBAS를 활용한 항공기 운항을 권고하고 있으며, 우리나라도 이에 발맞추어 한국형 위성항법보강시스템인 KASS (Korea augmentation satellite system)를 개발 중에 있다. 본 논문에서는 KASS 개발이 완료되는 시점인 2022년 이전에 KASS 비행시험 및 검사 절차를 수립하기 위하여 SBAS 비행검사 관련 ICAO 및 FAA 규정을 분석하고 도출된 기준 항목들은 향후 KASS 비행시험 및 검사과정에 참고 될 수 있을 것으로 기대된다.

Requirements Analysis of Image-Based Positioning Algorithm for Vehicles

  • Lee, Yong;Kwon, Jay Hyoun
    • 한국측량학회지
    • /
    • 제37권5호
    • /
    • pp.397-402
    • /
    • 2019
  • Recently, with the emergence of autonomous vehicles and the increasing interest in safety, a variety of research has been being actively conducted to precisely estimate the position of a vehicle by fusing sensors. Previously, researches were conducted to determine the location of moving objects using GNSS (Global Navigation Satellite Systems) and/or IMU (Inertial Measurement Unit). However, precise positioning of a moving vehicle has lately been performed by fusing data obtained from various sensors, such as LiDAR (Light Detection and Ranging), on-board vehicle sensors, and cameras. This study is designed to enhance kinematic vehicle positioning performance by using feature-based recognition. Therefore, an analysis of the required precision of the observations obtained from the images has carried out in this study. Velocity and attitude observations, which are assumed to be obtained from images, were generated by simulation. Various magnitudes of errors were added to the generated velocities and attitudes. By applying these observations to the positioning algorithm, the effects of the additional velocity and attitude information on positioning accuracy in GNSS signal blockages were analyzed based on Kalman filter. The results have shown that yaw information with a precision smaller than 0.5 degrees should be used to improve existing positioning algorithms by more than 10%.

Accuracy Assessment of Topographic Volume Estimation Using Kompsat-3 and 3-A Stereo Data

  • Oh, Jae-Hong;Lee, Chang-No
    • 한국측량학회지
    • /
    • 제35권4호
    • /
    • pp.261-268
    • /
    • 2017
  • The topographic volume estimation is carried out for the earth work of a construction site and quarry excavation monitoring. The topographic surveying using instruments such as engineering levels, total stations, and GNSS (Global Navigation Satellite Systems) receivers have traditionally been used and the photogrammetric approach using drone systems has recently been introduced. However, these methods cannot be adopted for inaccessible areas where high resolution satellite images can be an alternative. We carried out experiments using Kompsat-3/3A data to estimate topographic volume for a quarry and checked the accuracy. We generated DEMs (Digital Elevation Model) using newly acquired Kompsat-3/3A data and checked the accuracy of the topographic volume estimation by comparing them to a reference DEM generated by timely operating a drone system. The experimental results showed that geometric differences between stereo images significantly lower the quality of the volume estimation. The tested Kompsat-3 data showed one meter level of elevation accuracy with the volume estimation error less than 1% while the tested Kompsat-3A data showed lower results because of the large geometric difference.

GPS 수신기를 위한 모델 기반 다중경로 신호 추정 기법 (A Model-Based Multipath Estimation Technique for GPS Receivers)

  • 임덕원;최헌호;허문범;이상정
    • 제어로봇시스템학회논문지
    • /
    • 제18권4호
    • /
    • pp.391-399
    • /
    • 2012
  • Multipath remains a dominant source of ranging errors in GNSS (Global Navigation Satellite System). And it is generally considered undesirable in the context of GNSS, since the reception of multipath can make significant distortion to the shape of the correlation function. In this paper, therefore, the model of the distorted shape of the correlation function is formulated and a MBME (Model-Based Multipath Estimation) technique for GPS L1/L5 receivers is proposed in order to estimate the parameters of the indirect signal such as the amplitude and the delay. The MBME technique does not require the any hardware modifications and it can estimate the parameters for both the short and long-delay multipath. Especially, it would be the very effective technique for the short-delay multipath if the L5 signal is available. Finally, the feasibility of the proposed technique has been confirmed by simulation results.

Realization of New Korean Horizontal Geodetic Datum: GPS Observation and Network Adjustment

  • Lee, Young-Jin;Lee, Hung-Kyu;Jung, Gwang-Ho
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 International Symposium on GPS/GNSS Vol.1
    • /
    • pp.529-534
    • /
    • 2006
  • New geocentric geodetic datum has recently been realized in Korea, Korean Geodetic Datum 2002- KGD2002, to overcome problems due to the existing Tokyo datum, which had been used in this country since early 20th century. This transition will support modern surveying techniques, such as Global Navigation Satellite Systems (GNSS) and ensures that spatial data is compatible with other international systems. For this realization, very long baseline interferometry (VLBI) observations were initially carried out in 1995 to determine the coordinates of the origin of KGD2002 based on the International Terrestrial Reference Frame (ITRF). Continuous GPS observations were collected from 14 reference stations across Korea to compute the coordinates of 1st order horizontal geodetic control points. During the campaign, GPS observations were also collected at about 9,000 existing geodetic control points. In 2006, network adjustment with all data obtained using GPS and EDM since 1975 has been performed under the condition of fixing the coordinates of GPS continuous observation stations to compute coordinate measurements of the 2nd and 3rd geodetic control points. This paper describes the GPS campaigns which have been undertaken since 1996 and details of the network adjustment schemes. This is followed

  • PDF

Implementation and Performance Analysis of Multi-GNSS Signal Collection System using Single USRP

  • Park, Kwi Woo;Choi, Yun Sub;Lee, Min Joon;Lee, Sang Jeong;Park, Chansik
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제5권1호
    • /
    • pp.11-20
    • /
    • 2016
  • In this paper, a system that can collect GPS L1 C/A, GLONASS G1, and BDS B1I signals with single front-end receiver was implemented using a universal software radio peripheral (USRP) and its performance was verified. To acquire the global navigation satellite system signals, hardware was configured using USRP, antenna, external low-noise amplifier, and external oscillator. In addition, a value of optimum local oscillator frequency was selected to sample signals from three systems with L1-band with a low sampling rate as much as possible. The comparison result of C/N0 between the signal collection system using the proposed method and commercial receiver using double front-end showed that the proposed system had 0.7 ~ 0.8dB higher than that of commercial receiver for GPS L1 C/A signals and 1 ~ 2 dB lower than that of commercial receiver for GLONASS G1 and BDS B1I. Through the above results, it was verified that signals collected using the three systems with a single USRP had no significant error with that of commercial receiver. In the future, it is expected that the proposed system will be combined with software-defined radio (SDR) and advanced to a receiver that has a re-configuration channel.