• 제목/요약/키워드: Global Error

검색결과 1,023건 처리시간 0.024초

Noisy 한 CFD 결과에 대한 구속조건을 고려한 EGO 방법 연구 (A STUDY ON CONSTRAINED EGO METHOD FOR NOISY CFD DATA)

  • 배효길;권장혁
    • 한국전산유체공학회지
    • /
    • 제17권4호
    • /
    • pp.32-40
    • /
    • 2012
  • Efficient Global Optimization (EGO) method is a global optimization technique which can select the next sample point automatically by infill sampling criteria (ISC) and search for the global minimum with less samples than what the conventional global optimization method needs. ISC function consists of the predictor and mean square error (MSE) provided from the kriging model which is a stochastic metamodel. Also the constrained EGO method can minimize the objective function dealing with the constraints under EGO concept. In this study the constrained EGO method applied to the RAE2822 airfoil shape design formulated with the constraint. But the noisy CFD data caused the kriging model to fail to depict the true function. The distorted kriging model would make the EGO deviate from the correct search. This distortion of kriging model can be handled with the interpolation(p=free) kriging model. With the interpolation(p=free) kriging model, however, the search of EGO solution was stalled in the narrow feasible region without the chance to update the objective and constraint functions. Then the accuracy of EGO solution was not good enough. So the three-step search method was proposed to obtain the accurate global minimum as well as prevent from the distortion of kriging model for the noisy constrained CFD problem.

INS/GPS Integrated Smoothing Algorithm for Synthetic Aperture Radar Motion Compensation Using an Extended Kalman Filter with a Position Damping Loop

  • Song, Jin Woo;Park, Chan Gook
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권1호
    • /
    • pp.118-128
    • /
    • 2017
  • In this study, we propose a real time inertial navigation system/global positioning system (INS/GPS) integrated smoothing algorithm based on an extended Kalman filter (EKF) and a position damping loop (PDL) for synthetic aperture radar (SAR). Integrated navigation algorithms usually induce discontinuities due to error correction update by the Kalman filter, which are as detrimental to the performance of SAR as the relative position error. The proposed smoothing algorithm suppresses these discontinuities and also reduces the relative position error in real time. An EKF estimates the navigation errors and sensor biases, and all the errors except for the position error are corrected directly and instantly. A PDL activated during SAR operation period imposes damping effects on the position error estimates, where the estimated position error is corrected smoothly and gradually, which contributes to the real time smoothing and small relative position errors. The residual errors are re-estimated by the EKF to maintain the estimation performance and the stability of the overall loop. The performance improvements were confirmed by Monte Carlo simulations. The simulation results showed that the discontinuities were reduced by 99.8% and the relative position error by 48% compared with a conventional EKF without a smoothing loop, thereby satisfying the basic performance requirements for SAR operation. The proposed algorithm may be applicable to low cost SAR systems which use a conventional INS/GPS without changing their hardware configurations.

IIR LMS 알고리즘에서의 바이어스 제거 (ELIMINATION OF BIAS IN THE IIR LMS ALGORITHM)

  • 남승현;김용호
    • 자연과학논문집
    • /
    • 제8권1호
    • /
    • pp.5-15
    • /
    • 1995
  • IRR 적응 휠터의 공식오차 방식은 지역 최소값에 관계없이 전역 최소값에 수렴하며 안정성이 높다. 그러나 공식오차 방식은 입력 신호에 잡음이 섞여 경우 예측계수가 바이어스 되는 문제가 있다. 본 논문에서는 사전에 잡음에 대한 지식이 없이 바이어스가 없는 예측계수를 얻을 수 있는 새로운 공식 오차 방식을 위한 알고리즘을 제안한다. 이 알고리즘은 공식오차를 스므딩하는 방식을 이용하여 입력에 추가되는 잡음이 백색잡음인 경우 바이어스 없이 계수를 예측할 수 있다. 시뮬레이션을 통해 새로운 알고리즘이 공식오차의 중요한 장점인 빠른 수렴속도와 안정성을 유지하며 바이어스를 효율적으로 제거함을 볼 수 있다.

  • PDF

Along-Track Position Error Bound Estimation using Kalman Filter-Based RAIM for UAV Geofencing

  • Gihun, Nam;Junsoo, Kim;Dongchan, Min;Jiyun, Lee
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제12권1호
    • /
    • pp.51-58
    • /
    • 2023
  • Geofencing supports unmanned aerial vehicle (UAV) operation by defining stay-in and stay-out regions. National Aeronautics and Space Administration (NASA) has developed a prototype of the geofencing function, SAFEGUARD, which prevents stayout region violation by utilizing position estimates. Thus, SAFEGUARD depends on navigation system performance, and the safety risk associated with the navigation system uncertainty should be considered. This study presents a methodology to compute the safety risk assessment-based along-track position error bound under nominal and Global Navigation Satellite Systems (GNSS) failure conditions. A Kalman filter system using pseudorange measurements as well as pseudorange rate measurements is considered for determining the position uncertainty induced by velocity uncertainty. The worst case pseudorange and pseudorange rate fault-based position error bound under the GNSS failure condition are derived by applying a Receiver Autonomous Integrity Monitor (RAIM). Position error bound simulations are also conducted for different GNSS fault hypotheses and constellation conditions with a GNSS/INS integrated navigation system. The results show that the proposed along-track position error bounds depend on satellite geometries caused by UAV attitude change and are reduced to about 40% of those of the single constellation case when using the dual constellation.

A Modified Klobuchar Model Reflecting Characteristics of Ionospheric Delay Error in the Korea Region

  • Dana Park;Young Jae Lee
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제12권2호
    • /
    • pp.121-128
    • /
    • 2023
  • When calculating the user's position using satellite signals, the signals originating from the satellite pass through the ionosphere and troposphere to the user. In particular, the ionosphere delay error that occurs when passing through the ionosphere delays when the signal is transmitted, generating a pseudorange error and position error at a large rate. Therefore, to improve position accuracy, it is essential to correct the ionosphere layer error. In a receiver capable of receiving dual frequency, the ionosphere error can be eliminated through a double difference, but in a single frequency receiver, an ionosphere correction model transmitted from a Global Navigation Satellite System (GNSS) satellite is used. The popularly used Klobuchar model is designed to improve performance globally. As such, it does not perform perfectly in the Korea region. In this paper, the characteristics of the delay in the ionosphere in the Korean region are identified through an analysis of 10 years of data, and an improved ionosphere correction model for the Korean region is presented using the widely employed Klobuchar model. Through the proposed model, vertical position error can be improved by up to 40% relative to the original Klobuchar model in the Korea region.

가우시안 분포의 다중클래스 데이터에 대한 최적 피춰추출 방법 (Optimal feature extraction for normally distributed multicall data)

  • 최의선;이철희
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1998년도 추계종합학술대회 논문집
    • /
    • pp.1263-1266
    • /
    • 1998
  • In this paper, we propose an optimal feature extraction method for normally distributed multiclass data. We search the whole feature space to find a set of features that give the smallest classification error for the Gaussian ML classifier. Initially, we start with an arbitrary feature vector. Assuming that the feature vector is used for classification, we compute the classification error. Then we move the feature vector slightly and compute the classification error with this vector. Finally we update the feature vector such that the classification error decreases most rapidly. This procedure is done by taking gradient. Alternatively, the initial vector can be those found by conventional feature extraction algorithms. We propose two search methods, sequential search and global search. Experiment results show that the proposed method compares favorably with the conventional feature extraction methods.

  • PDF

GPS Output Signal Processing considering both Correlated/White Measurement Noise for Optimal Navigation Filtering

  • Kim, Do-Myung;Suk, Jinyoung
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제13권4호
    • /
    • pp.499-506
    • /
    • 2012
  • In this paper, a dynamic modeling for the velocity and position information of a single frequency stand-alone GPS(Global Positioning System) receiver is described. In static condition, the position error dynamic model is identified as a first/second order transfer function, and the velocity error model is identified as a band-limited Gaussian white noise via non-parametric method of a PSD(Power Spectrum Density) estimation in continuous time domain. A Kalman filter is proposed considering both correlated/white measurements noise based on identified GPS error model. The performance of the proposed Kalman filtering method is verified via numerical simulation.

오류 역전파법으로구현한 컬러 인쇄물 검사에 관한 연구 (A study on the realization of color printed material check using Error Back-Propagation rule)

  • 한희석;이규영
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 추계학술대회 학술발표 논문집
    • /
    • pp.560-567
    • /
    • 1998
  • This paper concerned about a imputed color printed material image in camera to decrease noise and distortion by processing median filtering with input image to identical condition. Also this paper proposed the way of compares a normal printed material with an abnormal printed material color tone with trained a learning of the error back-propagation to block classification by extracting five place from identical block(3${\times}$3) of color printed material R, G, B value. As a representative algorithm of multi-layer perceptron the error Back-propagation technique used to solve complex problems. However, the Error Back-propagation is algorithm which basically used a gradient descent method which can be converged to local minimum and the Back Propagation train include problems, and that may converge in a local minimum rather than get a global minimum. The network structure appropriate for a given problem. In this paper, a good result is obtained by improve initial condition and adjust th number of hidden layer to solve the problem of real time process, learning and train.

  • PDF

Ka 대역 안테나 서브시스템 포인팅 에러 분석 (Ka-band Antenna Subsystem Pointing Variation Analysis)

  • 이용덕;최장섭;박재우;이성필
    • 한국위성정보통신학회논문지
    • /
    • 제1권2호
    • /
    • pp.32-37
    • /
    • 2006
  • 한국전자통신연구원은 2008년 말에 발사될 예정인 통신해양위성에 탑재될 Ka대역 안테나서브시스템을 개발하고 있다. Ka대역 통신용 안테나 서브시스템은 위성체의 동,서 판넬에 각각 하나씩 구성되어 있다. 이를 추진하기 위하여 한국전자통신연구원은 현제 대한항공(주)과 공동으로 통신위성 안테나 서브시스템을 설계하고 있다. 본 논문은 이득 변화 등과 같은 안테나 서브시스템 성능 규격을 검증하기 위하여 Ka 대역 반사판 포인팅 에러분석에 대하여 기술한다. 수행된 분석은 열변형에 의한 반사판 표면 변형 데이터 이며 이를 Ticra로 빔패턴의 변화를 확인하였다.

  • PDF

Ionospheric Model Performance of GPS, QZSS, and BeiDou on the Korean Peninsula

  • Serim Bak;Beomsoo Kim;Su-Kyung Kim;Sung Chun Bu;Chul Soo Lee
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제12권2호
    • /
    • pp.113-119
    • /
    • 2023
  • Satellite navigation systems, with the exception of the GLObal NAvigation Satellite System (GLONASS), adopt ionosphere models and provide ionospheric coefficients to single-frequency users via navigation messages to correct ionospheric delay, the main source of positioning errors. A Global Navigation Satellite System (GNSS) mostly has its own ionospheric models: the Klobuchar model for Global Positioning System (GPS), the NeQuick-G model for Galileo, and the BeiDou Global Ionospheric delay correction Model (BDGIM) for BeiDou satellite navigation System (BDS)-3. On the other hand, a Regional Navigation Satellite System (RNSS) such as the Quasi-Zenith Satellite System (QZSS) and BDS-2 uses the Klobuchar Model rather than developing a new model. QZSS provides its own coefficients that are customized for its service area while BDS-2 slightly modifies the Klobuchar model to improve accuracy in the Asia-Pacific region. In addition, BDS broadcasts multiple ionospheric parameters depending on the satellites, unlike other systems. In this paper, we analyzed the different ionospheric models of GPS, QZSS, and BDS in Korea. The ionospheric models of QZSS and BDS-2, which are based in Asia, reduced error by at least 25.6% compared to GPS. However, QZSS was less accurate than GPS during geomagnetic storms or at low latitude. The accuracy of the models according to the BDS satellite orbit was also analyzed. The BDS-2 ionospheric model showed an error reduction of more than 5.9% when using GEO coefficients, while in BDS-3, the difference between satellites was within 0.01 m.