• Title/Summary/Keyword: Glass-infiltration of Zirconia Ceramics

Search Result 3, Processing Time 0.022 seconds

Study on Biaxial Flexural Strength by Glass-infiltration of Zirconia Ceramics (지르코니아 세라믹의 Glass-infiltration에 의한 2축 굽힘강도에 관한 연구)

  • Joo, Kyu-Ji;Jung, Jong-Hyun;Song, Kyung-Woo
    • Journal of Technologic Dentistry
    • /
    • v.30 no.1
    • /
    • pp.41-47
    • /
    • 2008
  • This study was to evaluate the biaxial flexural strength of zirconia ceramics after glass-infiltration on zirconia core. The zirconia specimens were made with diameter-15mm, thickness-0.6mm using zirconia block which divided into 1) sintered group, 2) heat - treated group, 3) Glass - infiltrated group and experimented fracture strength by each 10 specimens in experimental group. The biaxial flexural test was performed at crosshead speed of 0.1${\beta}\;{\AE}$ min. The experiment result average fracture strength was shown 541.0${\beta}\acute{A}$ in sintered group and glass-infiltrated group as 662.2${\beta}\acute{A}$ river of 22.4% rise appear. Weibull coefficient sintered group is 3.462 and glass-infiltrated group improved believability about fracture strength from melting permeation processing of glass by 4.716.

  • PDF

Effect of Zirconia Addition on Mechanical Properties of Spinel/Zirconia-glass Dental Crown Composites Prepared by Melt-infiltration (용융침투법으로 제조한 인공치관용 스피넬/지르코니아-유리 복합체의 기계적 특성에 미치는 지르코니아 첨가효과)

  • Lee, Deuk-Yong;Kim, Byung-Soo;Jang, Joo-Wung;Lee, Myung-Hyun;Park, Il-Seok;Kim, Dae-Joon
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.11
    • /
    • pp.1028-1034
    • /
    • 2002
  • Spinel/zirconia-glass composites prepared by melt-infiltration were fabricated to investigate the effect of zirconia addition on mechanical and optical properties of the composites. The infiltration distance was parabolic with respect to time as described by the Washburn equation and the penetration rate constant, K, decreased due to the reduction in pore size as the amount of zirconia rose. Although the optimum strength(308 MPa) of the Spinel/zirconia-glass composites was observed when the zirconia was added up to 20 wt%, K and transmittance decreased as the zirconia content rose. In conclusion, it suggested that the positive effect of strength as a result of the addition of zirconia was not effective.

Influence of surface treatments on the shear bond strength between zirconia ceramic and zirconia veneering ceramics (지르코니아의 표면 처리에 따른 전장용 세라믹과의 전단결합강도)

  • Ahn, Jae-Seok;Lee, Jung-Hwan
    • Journal of Technologic Dentistry
    • /
    • v.35 no.1
    • /
    • pp.19-27
    • /
    • 2013
  • Purpose: The aim of this research was to evaluate the shear bond strength of different zirconia veneering ceramics with and without liner glass materials to yttria partially-stabilized tetragonal zirconia polycrystalline(Y-TZP). Methods: Five co mmercial zirconia veneering ceramics were used in this study, E-Max(EM), Creation ZI(CR), Cercon ceram kiss(CE), Triceram(TR) and Zirkonzahn ICE(ZI). All samples were prepared according to manufacturer's instructions. Experimental industrially manufactured Y-TZP ceramic blocks(diameter: 2.7 mm; height: 13.5 mm) were used in this study. Shear bond strength between zirconia ceramic coping and zirconia veneering ceramics were evaluated by the push-shear bond test. The fracture load data were analyzed using ANOVA and Scheffe's test(${\alpha}$=0.05). The fractured surfaces of zirconia core ceraimc and zirconia veneering ceramics were observed using a scanning electron microscope(SEM). Results: The mean shear bond strengths ranged from 20 MPa ($20.12{\pm}6.34$ MPa) to 66.6 MPa ($66.62{\pm}10.01$ MPa). The Triceram(TRG) showed the highest value and Creation ZI(CR) showed the lowest value. In all groups, Zirconia liner and glass material groups was significantly higher shear bond strength than without liner(P<0.05), with the exception of Cercon ceram kiss(CE)groups. Conclusion: Zirconia bonding materials may have the advantage of improved bond strength between zirconia ceramic core and veneering ceramics.