• Title/Summary/Keyword: Glass-forming ability

Search Result 41, Processing Time 0.026 seconds

Glass Forming Ability of Bulk Amorphous Alloy Scrap by Fluxing (플럭스처리에 의한 벌크비정질합금 스크랩의 비정질형성능)

  • Kang, Bok-Hyun;Kim, Ki-Young
    • Journal of Korea Foundry Society
    • /
    • v.30 no.3
    • /
    • pp.94-99
    • /
    • 2010
  • When the returned scrap of bulk amorphous alloy is remelted, impurities such as oxides and intermetallic compounds increase. Glass forming ability of its scrap is deteriorated remarkably. Melt fluxing technique is introduced to enhance the glass forming ability during melting and freezing of bulk amorphous alloys. Cu and Zr based alloys are chosen. Small pieces of these alloy scraps and $B_2O_3$ flux are put together in a quartz tube. Cyclic heating and cooling are done by induction heating and water quenching or air cooling. Melting fluxing was effective for both Cu-based and Zr-based alloy, and their glass forming abilities were improved with increasing the number of fluxing.

A New Cu-Hf-Al-Be Bulk Amorphous Alloy with High Glass Forming Ability (우수한 비정질 형성능을 가지는 Cu-Hf-Al-Be 4원계 벌크 비정질 합금)

  • Shin, Sang-Soo;Lim, Kyoung-Mook;Kim, Seong-Nyeong;Kim, Eok-Soo
    • Journal of Korea Foundry Society
    • /
    • v.31 no.4
    • /
    • pp.186-190
    • /
    • 2011
  • A new Cu-Hf-Al-Be monolithic bulk amorphous alloy was developed utilizing minimal use of toxic and expensive Be. The developed alloy exhibits a large glass forming ability (GFA) (${\Phi}8$ mm). The possible mechanisms underlying the enhancement of the glass forming ability by this alloy are discussed based on the dimensionless parameter ${\gamma}$. In addition, alloy design strategy for the improvement of GFA is proposed in the viewpoint of heat of mixing (${\Delta}H_{mix}$)difference and atomic packing state.

Evaluation of Glass-forming Ability in Ca-based Bulk Metallic Glass Systems (칼슘기 벌크 비정질 합금에서 비정질 형성능 평가)

  • Park, Eun-Soo;Kim, Do-Hyang
    • Journal of Korea Foundry Society
    • /
    • v.29 no.4
    • /
    • pp.181-186
    • /
    • 2009
  • The interrelationship between new parameter ${\sigma}$ and maximum diameter $D_{max}$ is elaborated and discussed in comparison with four other glass forming ability (GFA) parameters, i.e. (1) super-cooled liquid region ${\Delta}T_x (=T_x - T_g)$, (2) reduced glass transition temperature $T_{rg} (=T_g/T_l)$, (3) K parameter $K (=[T_x-T_g]/[T_l -T_x])$, and (4) gamma parameter ${\gamma}(=[T_x]/[T_l+T_g])$ in Ca-based bulk metallic glass (BMG) systems. The ${\sigma}$ parameter, defined as ${\Delta}T^*{\times}P^'$, has a far better correlation with $D_{max}$ than the GFA parameters suggested so far, clearly indicating that the liquid phase stability and atomic size mismatch dominantly affect the GFA of Ca-based BMGs. Thus, it can be understood that the GFA of BMGs can be properly described by considering structural aspects for glass formation as well as thermodynamic and kinetic aspects for glass formation.

The Role of Be Addition on Glass Forming Ability and Plasticity of Zr-Cu-Al Ternary Amorphous Alloy System (Zr-Cu-Al 3원계 비정질 합금의 형성능 및 소성에 미치는 Be의 역할)

  • Shin, Sang-Soo;Lim, Kyoung-Mook;Kim, Eok-Soo
    • Journal of Korea Foundry Society
    • /
    • v.30 no.2
    • /
    • pp.83-88
    • /
    • 2010
  • Bulk amorphous alloys with reasonable glass forming ability and large plasticity were found in Zr-Cu-Al alloys. Further increase in the GFA and the ductility is expected by appropriately choosing a fourth element. In this study, we select Be as the fourth element and added to the Zr-Cu-Al system to synthesize $(Zr_{57.4}Cu_{38.1}Al_{4.5})_{100-x}Be_x$(x=0~16) alloys and the glass forming ability and the plasticity were measured. With Be addition, the supercooled liquid region (${\Delta}T_x$), the plasticity and GFA as high as $134^{\circ}C$, 20.5%, 7 mm, respectively, can be obtained. Herein, we present the effect of Be addition on the variations of various mechanical properties and thermal characteristics of the $(Zr_{57.4}Cu_{38.1}Al_{4.5})_{100-x}Be_x$ alloys.

The Effects of Co Addition on Glass Forming Ability and Magnetic Properties for FeSiBNb Ribbon Alloys (FeSiBNb 리본 합금의 비정질 형성능과 자기적 특성에 미치는 Co의 첨가 효과)

  • Lee, Tae-Gyu;Noh, Tae-Hwan
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.3
    • /
    • pp.128-132
    • /
    • 2007
  • The thermal and magnetic properties of amorphous (FeCo)SiBNb ribbon alloys with high glass forming ability have been investigated. The glass forming ability was enhanced by Co substitution in amorphous ($Fe_{1-X}Co_X)_{72}Si_4B_{20}Nb_4$ alloys with the thickness of about $40{\mu}m$. With the increase in Co content, the temperature range of supercooled liquid phase increased indicating the high glass forming ability of the Co-added alloys. Further the ac permeability increased, and the core loss decreased considerably by Co substitution, while small change in $B_8$ (magnetic flux density at 800 A/m) was observed. The frequency characteristics of permeability deteriorated as compared to conventional amorphous ribbon alloys with the thickness of about $20\;{\mu}m$ due to the increased skin effect.

The Effect of Oxygen Content on the Glass Forming Ability and Mechanical Properties of the Zr-based Amorphous Alloy Return Scrap (Zr기지 비정질 합금 스크랩의 비정질 형성능 및 기계적 성질에 미치는 산소함량의 영향)

  • Kim, Sung-Gyoo;Lee, Byung-Chul;Park, Heung-Il
    • Journal of Korea Foundry Society
    • /
    • v.35 no.4
    • /
    • pp.75-79
    • /
    • 2015
  • Commercial Zr-based amorphous alloy was recycled and oxygen was introduced during the recycling process. The oxygen content can have a great effect on the glass forming ability and the mechanical properties of the alloy. Therefore, it was closely examined. The initial oxygen content in the raw material was 1,244 ppm. It was increased to 3,789 ppm in the alloy after ten recycling processes. As the recycling processes were repeated, the oxygen content increased. Specifically, after four recycling processes, it increased sharply as compared to that after three recycling processes. After ten recycling processes, the glass transition temperature (Tg) increased from 613 K to 634 K and the crystallization temperature (Tx) increased from 696 K to 706 K. On the other hand, the super-cooled liquid region (${\Delta}T=Tx-Tg$) decreased slightly from 83 K to 72 K while the reduced glass transition temperature (Trg = Tg/Tm) was 0.63, remaining constant even when the oxygen content was increased. These results indicated that the increased oxygen content deteriorated the glass forming ability. The bending strength as determined in a three-point bending test showed a sharp decrease from 3,055 to 2,062 MPa as the oxygen content was increased from 1,244 ppm to 3,789 ppm; the extension was also decreased from 3.02 to 1.74 mm. These findings meant that the alloy became brittle.

Effects of Transition Temperature and Atomic Ratio on Glass Formation Tendency in the PbO-B$_2$O$_3$-TiO$_2$-BaO System (PbO-B$_2$O$_3$-TiO$_2$-BaO계의 유리화에 대한 전이온도 및 성분 원소비의 영향)

  • 이선우;심광보;오근호
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.12
    • /
    • pp.1274-1279
    • /
    • 1998
  • The glass forming ability of the PbO-B2O3-TiO3-BaO system was investigated in relation to transitieon tem-peratures and the atomic ratio between constituents. Glass forming tendency was improved as the tem-peratures and the atomic ratio between constituents. Glass forming tendency was improved as the tem-perature differences between liquidus temperature and crystallization(or glass transition) temperature de-creased and the temperature difference between crystallization and glass transition temperature increases. The atomic ratio could be used as a criterion to deign glass systems. The interposition of B and Ba atoms between Pb and Ti atoms was one of important factors in glass formation.

  • PDF

Large Glass-forming Ability and Magnetocaloric Effect in Gd55Co20Al23Si2 Bulk Metallic Glass

  • Li, Qian;Cai, Pingping;Shen, Baolong;Akihiro, Makino;Akihisa, Inoue
    • Journal of Magnetics
    • /
    • v.16 no.4
    • /
    • pp.440-443
    • /
    • 2011
  • In this study, we investigated the glass-forming ability (GFA) and magnetocaloric effect (MCE) of $Gd_{55}Co_{20}Al_{23}Si_2$ bulk glassy alloy. It is found that the addition of 2 at% Si is effective for extension of the supercooled liquid region (${\Delta}T_x$), the ${\Delta}T_x$ is 55 K for the $Gd_{55}Co_{20}Al_{25}$ glassy alloy, and increases to 79 K for the $Gd_{55}Co_{20}Al_{23}Si_2$ alloy. As a result, $Gd_{55}Co_{20}Al_{23}Si_2$ glassy alloys with diameters up to 5 mm were successfully synthesized. The alloys also exhibit large MCE, i.e., the magnetic entropy change (${\Delta}S_m$) of 8.9 J $kg^{-1}\;K^{-1}$, the full width at half maximum of the ${\Delta}S_m$ (${\delta}T_{FWHM}$) of 87 K, and the refrigerant capacity (RC) of 774 J $kg^{-1}$.

The Effect of Sn on the Glass Formation Ability of the Zr-based Amorphous Alloy (Zr-based 비정질 합금의 비정질 특성에 미치는 Sn의 영향)

  • Lee, Byung-Chul;Park, Heong-Il;Park, Bong-Gyu;Kim, Sung-Gyoo
    • Journal of Korea Foundry Society
    • /
    • v.34 no.2
    • /
    • pp.49-53
    • /
    • 2014
  • In commercial Zr-Nb-Cu-Ni-Al amorphous alloys, expensive element, Zr, was substituted to Sn which was cheaper one, and then, glass forming ability, compressive strength and hardness of them were estimated. Even though the Sn was added up to 1.5%, resulting phase was not changed to the crystalline form. It was confirmed by X-ray diffraction and thermal analyses. In the X-ray profiles, there were no peaks for crystalline phases and typical halo pattern for amorphous phase was appeared at the diffraction angle of $35^{\circ}{\sim}45^{\circ}$. Thermal analyses also showed that the Sn modified alloys were corresponded to the amorphous standards where ${\delta}T$(= Tx - Tg) and Trg(= Tg/Tm) affecting to the amorphous forming ability were more than 50K and 0.60 respectively. Compressive strengths were 1.77 GPa, 1.63 GPa, 1.65 GPa and 1.77 GPa for 0%Sn, 0.5%Sn, 1.0%Sn and 1.5%Sn respectively. Hardnesses of the Sn modified alloys were decreased from 752 Hv to 702 Hv in 1.0%Sn and recovered to 746 Hv in 1.5%Sn.

Effect of Alloying Elements on the Glass Forming Ability of Zr-Ti-Cu-Ni-X Alloys (Zr-Ti-Cu-Ni-X계 합금의 첨가원소에 따른 비정질 형성능)

  • Choi, Chul-Jin
    • Journal of Korea Foundry Society
    • /
    • v.21 no.5
    • /
    • pp.286-289
    • /
    • 2001
  • The glass formation behavior was investigated in the melt spun Zr-Ti-Cu-Ni-X (X=B, P and Si) ribbons. The magnitude of supercooled liquid region of Zr-Ti-Cu-Ni alloy increased with an addition of alloying element. The glass transition temperature and the crystallization temperature increased and the magnitude of supercooled liquid region decreased with increasing the content of alloying elements. The largest supercooled liquid region was observed in the Si containing alloy. This is believed to be due to the dense atom packing with the optimum atomic size ratio of constituent elements.

  • PDF