• Title/Summary/Keyword: Glass-SiC composite

Search Result 49, Processing Time 0.04 seconds

Thickness Dependence of CVD-SiC-Based Composite Ceramic for the Mold of the Curved Cover Glass (곡면 커버 글라스용 금형 코팅을 위한 CVD-SiC 기반 세라믹 복합체의 두께에 따른 특성 연구)

  • Kim, Kyoung-Ho;Jeong, Seong-Min;Lee, Myung-Hyun;Bae, Si-Young
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.6
    • /
    • pp.310-315
    • /
    • 2019
  • The use of a silicon carbide (SiC)-based composite ceramic layer for the mold of a curved cover glass was demonstrated. The stress of SiC/VDR/graphite-based mold structure was evaluated via finite element analysis. The results revealed that the maximum tensile stress primarly occured at the edge region. Moreover, the stress can be reduced by employing a relatively thick SiC coating layer and, therefore, layers of various thicknesses were deposited by means of chemical vapor deposition. During growth of the layer, the orientation of the facets comprising the SiC grain became dominant with additional intense SiC(220) and SiC(004). However, the roughness of the SiC layer increased with increasing thickness of the layer and. Hence, the thickness of the SiC layer needs to be adjusted by values lower than the tolerance band of the curved cover glass mold.

A sintering Behavior of Glass/Ceramic Composite used as substrate in High Frequency Range (고주파대역에서 기판으로 쓰이는 Glass/Ceramics Composite의 소결거동)

  • 이찬주;김형준;최성철
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.4
    • /
    • pp.302-307
    • /
    • 2000
  • The objective of this study was to investigate the sintering behavior, crystallization characteristic of glass-ceramic and optimal sintering condition on the glass/ceramic composite for fabricating substrate of LTCC. Glass/ceramic composite was made from alumina powder and glass frit, which was composed of SiO2-TiO2-RO-PbO/(R: Ba, Sr, Ca), and was sintered for 0, 30, 60minutes in the temperature range from 700$^{\circ}C$ to 1000$^{\circ}C$. Properties of frit and glass/ceramic compsoite were analyzed by DTA, XRD, SEM and Network Analyzer and so on. Main sintering mechanism was densification occurred above 730$^{\circ}C$ by viscous flow and crystallization starting about 780$^{\circ}C$ affected sintering also. So viscous flow was affected by sintering temperature, duration time, and creation of crystallization phase etc. From this study, it was possible to fabricate glass/ceramic composite by changing sintering temperature and duration time.

  • PDF

A Resistance Property Against High Velocity Impact on Glass-SiC Composites (유리-탄화규소 복합재료의 고속충돌 저항물성)

  • Kim, Chang-Wook;Lee, Hyung-Bock
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.10 s.293
    • /
    • pp.653-659
    • /
    • 2006
  • The glass-SiC composites have been manufactured via viscous flow of glass for investigating their sinterability and various properties. The relative density of 99.6% could be achieved when 5 wt% SiC was mixed with glass powder, glass-rearranged at 460$^{\circ}C$ for 3 h and then sintered at 665$^{\circ}C$ for 1 h. The sintered density was decreased as adding more than 5 wt% SiC to glass powder. The resistance properties against hyper velocity copper jet formed by explosion of K215 warhead were compared with other ceramics such as $Al_2O_3$ and pyrex, resulting in lower values than that of $Al_2O_3$.

Biocompatibility of 13-93 Bioactive Glass-SiC Fabric Composites

  • Park, Jewon;Na, Hyein;Choi, Sung-Churl;Kim, Hyeong-Jun
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.2
    • /
    • pp.205-210
    • /
    • 2019
  • Bioactive glass (BG) finds limited use as a bone replacement material owing to its low mechanical properties. In order to solve this problem, the micro-sized 13-93 BG was prepared as a fabric composite with SiC microfibers, and its mechanical properties and biocompatibility were investigated in this study. The tensile strengths of BG-SiC fiber-bundle composites increased in proportion to the number of SiC fibers. In particular, even when only one SiC fiber was substituted, the tensile strength increased by 81% to 1428 MPa. In the early stage of the in-vitro test, a silica-rich layer was formed on the surface of the 13-93 BG fibers. With time, calcium phosphate grew on the silica-rich layer and the BG fibers were delaminated. On the other hand, no products were observed on the SiC fibers for 7 days, therefore, SiC fibers are expected to maintain their strength even after transplantation in the body.

Preparation of Carbon Composite with High Oxidation Resistance by MoSi2 Dispersion

  • Goto, S.;Kodera, M.;Toda, S.;Fujimori, H.;Ioku, K.
    • The Korean Journal of Ceramics
    • /
    • v.5 no.2
    • /
    • pp.115-118
    • /
    • 1999
  • Carbon composites with $MoSi_2$ dispersion were prepared by hot-pressing at $1700^{\circ}C$ under 30 MPa for 1 h using polysilazance as binding material. The composites consisted of C, $Mo_{4.8}Si_3C_{0.6}$ and SiC. Bulk density and porosity of the carbon composites with 10 vol% $MoSi_2$ was 1.8g.$\textrm{cm}^{-3}$ and 34%, respectively. This composite was oxidized about 0.05mm from the surface of the carbon composite after oxidation test at $1500^{\circ}C$ for 10h in air. Formation of the $SiO_2$ glass layer was observed by SEM. When this composite suffered damage in the coating layer, it had hardly farther oxidation because of its self-repairing property. The composite prepared in this study indicated good oxidation resistance.

  • PDF

$MoSi_2$/SiC Ceramic Composites Prepared by Polymer Pyrolysis (고분자 열분해에 의한 $MoSi_2$/SiC 세라믹 복합체)

  • 김범섭;김득중;김동표
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.8
    • /
    • pp.805-810
    • /
    • 2000
  • The formation, microstructure and properties of MoSi2/SiC ceramic composites by polymer pyrolysis were investigated for the application of heating element material. Polymethylsiloxanes were mixed with Si, SiC, MoSi2 as filler and ceramic composites prepared by pyrolysis in N2 atmosphere at 1320~145$0^{\circ}C$ were studied. Dimensional change, density variation and phases were analyzed and correlated to the resulting material properties. Microstructures of ceramic composite prepared by polymer pyrolysis were composed of MoSi2, SiC and silicon oxycarbide glass matrix. Depending on the pyrolysis conditions, ceramic composites with a density of 86~90 TD%, a fracture strength of 213~284 MPa, a thermal expansion coefficient of 4~7$\times$10-6 were obtained. The electrical resistivity of the specimen decreased with increasing of temperature up to 50$0^{\circ}C$.

  • PDF

High Temperature Gas Leak Behavior of Glass-Ceramic Fiber Composite Seals for SOFC Applications (SOFC용 유리-세라믹섬유 복합기밀재의 고온 기체누설 거동)

  • Lee, Jae-Chun;Kwon, Hyuk-Chon;Kwon, Young-Pil;Park, Sung;Jang, Jin-Sik;Lee, Jongho;Kim, Joosun;Lee, Hae-Won
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.12 s.283
    • /
    • pp.842-845
    • /
    • 2005
  • Glass composites containing ceramic fiber have been developed for Solid Oxide Fuel Cell (SOFC) seals. Effect of glass type, loading pressure and thermal cycle the leak rates of composite seals was investigated. Seal performance of two commercial glasses was compared with that of $SiO_2BaO-B_2O_3$ glass synthesized in this work. The leak rate for seals made of pyrex(R) increases from $\~0.0005\;to\;\~0.004sccm/cm$ as the gas pressure increases from 10 to 50 kPa. The soda lime silicate glass seal shows the leak rate two times higher than the one made of pyrex(R) or $SiO_2BaO-B_2O_3$ glass. The viscosity of glass at the seal test temperature is presumed to affect the leak rate of the glass seal. As the applied loading pressure increases from 0.4 to 0.8 MPa at $750^{\circ}C$, the leak rate decreases from 0.038 to 0.024 sccm/cm for composite seals. It has been found that during 50 thermal cycles between $450^{\circ}C\;to\;700^{\circ}C$ leak rates remained almost constant, ranging from 0.025 to 0.03sccm/cm. The results showed an excellent thermal cycle stability as well as sealability of the glass matrix ceramic fiber composite seals.

Sintering and Dielectric Properties in Cordierite/Glass Composite for LTCC Application (Cordierite/Glass Composite계 LTCC 소재의 소결 및 유전특성)

  • Hwang, Il-Sun;Yeo, Dong-Hun;Shin, Hyo-Soon;Kim, Jong-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.2
    • /
    • pp.144-150
    • /
    • 2008
  • Recently, there has been growing interest in low loss and low dielectric constant material for LTCC application, as the frequency range for electronic devices increases. This study was designed to evaluate the effect of cordierite filler for low dielectric constant LTCC material. From the previous experiments, two glass compositions of B-Si-Al-Zn-Ba-Ca-O and B-Si-Al-Sr-Ca-O system, were chosen. Each powder of two glass compositions was sintered respectively with commercial cordierite powder in temperature range from $800^{\circ}C\;to\;900^{\circ}C$. Crystalline cordierite and glass peaks were affected only with two factors of composition and sintering temperature among various factors. With the optimized condition of two cordierite/glass compositions, obtained dielectric constant was below 5.5 and quality factor was above 1,000. Closed pore of sintered body was controled by sintering temperature and sintering time. When cordierite/glass composite with ratio of 5.5:4.5 was sintered at $900^{\circ}C$, densification was sufficient with good dielectric characteristics of ${\epsilon}_r<5.1,\;Q{\ge}1,000$. Residual fine closed pores could be reduced with control of sintering temperature and time. 3 point bending strength and chemical durability were evaluated to obtain feasibility for substrate material.

Electrical Properties of Thick-Film Resistor Prepared by Using RuO2-Glass Composite Powder (RuO2-유리 복합분말을 이용하여 제조된 후막 저항의 전기적 특성 연구)

  • Kim, Min-Sik;Ryu, Sung-Soo
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.5
    • /
    • pp.301-307
    • /
    • 2017
  • The purpose of this study is to investigate the electrical properties of thick-film resistor (TFR) prepared from $CaO-ZnO-B_2O_3-Al_2O_3-SiO_2$ (CZBAS) glass containing $RuO_2$ particles. $RuO_2$-glass composite powder was made by mixing and melting oxide powders of constituents. For comparison, $RuO_2$ powder was simply mixed with glass powder. $RuO_2$-40wt% glass composite and mixture were dispersed in an organic binder to obtain printable resistor paste and then thick-film was formed by screen printing, followed by sintering at the range between $750^{\circ}C$ and $900^{\circ}C$ for 10 min with a heating rate of $50^{\circ}C/min$ in an ambient atmosphere. $RuO_2$-glass composite sample showed much higher resistance compared to the simple mixed sample. This could be attributed to the difference in conducting mechanism. After sintering at $850^{\circ}C$, temperature coefficient of resistance of composite sample was lower than that of simple-mixed sample. TFR with dense and homogeneous microstructure could be obtained by using $RuO_2$-glass composite powder.

INVESTIGATIONS ON THREE-BODY ABRASIVE WEAR BEHAVIOUR OF SILICON CARBIDE AND GRAPHITE FILLED GLASS-VINYL ESTER COMPOSITES

  • Suresha, B.;Chandramohan, G.;Siddaramaiah, Siddaramaiah;Lee, Joong- Hee
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.148-153
    • /
    • 2007
  • The effect of silicon carbide (SiC) and graphite fillers incorporation on the abrasive wear behaviour of glass-vinyl ester (G-V) composites have been investigated. The three-body abrasive wear behaviour was assessed by rubber wheel abrasion tests (RWAT). The worn surfaces were examined using scanning electron microscopy (SEM). The addition of SiC and graphite fillers in G-V composite improves the abrasion resistance under different loads/abrading distances. The SEM studies indicate the reasons for failure of composites and influencing parameters.

  • PDF