• Title/Summary/Keyword: Glass-Ceramic

Search Result 1,304, Processing Time 0.027 seconds

Effect of Glass Composition on the Properties of Glass-Infiltrated Alumina (II) : Effect of La2O3 (유리침투 알루미나 복합체의 물성에 미치는 유리조성의 영향 (II) : La2O3의 영향)

  • Lee, Jae-Hee;Kim, Cheol-Young
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.12 s.271
    • /
    • pp.939-945
    • /
    • 2004
  • Glasses of $SiO_2-B_{2}O_3-Al_{2}O_3-CaO-La_{2}O_3$ with various amounts of $La_{2}O_3$ were infiltrated into a porous alumina to make an alumina-glass composite. The infiltration characterization and bending strength of the composite were examined in terms of glass composition. $La_{2}O_3$ in the glass decreased the high temperature viscosity and this enhanced the wetting behaviour of this glass to alumina, and made glass infiltration easier. The infiltrated glass dissolved the alumina skeleton, and $Al_{2}O_3$ component in the glass melt reprecipitated on the alumina. The grain growth occurred to a specific crystal direction. The glass containing $20mole\%$ of $La_{2}O_3$ was crystallized after infiltration, and this enhanced the bending strength of the composite.

A Study on the Porous Glass-Ceramics in the Phosphate System (인산염계 다공질 결정화 유리에 관한 연구)

  • 박용완;현부성;김태호
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.7
    • /
    • pp.858-864
    • /
    • 1995
  • A porous glass-ceramics body was prepared in the phosphate system. The glass composition of 47.2CaO-22.2TiO2-30.6P2O5 (mol%) containing a few weight percent of ZrO2 was suitable for a mother glass of a porous glass-ceramics. The dense glass-ceramics body was made by a two-step heat treatment of the mother glass. The crystalline phases of the glass-ceramics were $\beta$-Ca3(PO4)2 and CaTi4(PO4)6. The $\beta$-Ca3(PO4)2 phase could be selectively leached out with HCl solution and thus a crystalline $\beta$-Ca3(PO4)2 skeleton was remained. The dimension and shape of the porous glass-ceramics were nearly the same as the those of the first formed glass. The specific surface area and average proe radius of the porous glass-ceramics were 19$m^2$/g and 22 nm, respectively.

  • PDF

A Study on the Co-firing Compatibility with Ag-thick film and Dielectric Characteristics of Low Temperature Sinterable SiO$_2$-TiO$_2$-Bi$_2$O$_3$-RO system (RO :BaO-CaO-SrO) Glass/Ceramic Dielectric Material with the Addition of B$_2$O$_3$ (저온 소성용 SiO$_2$-TiO$_2$-Bi$_2$O$_3$-RO계(RO :BaO-CaO-SrO) Glass/ceramic 유전체 재료의 B$_2$O$_3$첨가에 따른 Ag 후막과의 동시 소결시 정합성 밀 유전 특성에 관한 연구)

  • 윤장석;이인규;유찬세;이우성;강남기
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.6 no.3
    • /
    • pp.37-43
    • /
    • 1999
  • Co-firing incompatibility between the low temperature sinterable Glass/ceramic and Ag-thick film was studied. The dielectric material, which has been developed for microwave frequency applications, consists of $SiO_2-TiO_2-Bi_2O_3$-$Bi_2O_3$-RO system(RO:BaO -CaO-SrO) crystallizable glass and $Al_2O_3$as a ceramic filler. The large camber in the sintered specimen and cracks at the Ag-film under the influence of the camber occurred due to the difference of densification rate between the ceramic sheet and the Ag-film $B_2O_3$addition to the Glass/ceramic mixture reduced the severe camber. The cambers decreased with increasing the $B_2O_3$ content, and completely disappeared with 14 vol% $B_2O_3$addition. With additions of $B_2O_3$, $\varepsilon_{r}$ decreased abruptly, Q$\times$f value increased largely and the $\tau_f$ value of the material quickly shifted to positive one.

  • PDF

Synthesis of Nickel-doped Transparent Glass-ceramics for Ultra-broadband Optical Fiber Amplifiers

  • Suzuki, Takenobu;Arai, Yusuke;Ohishi, Yasutake
    • Ceramist
    • /
    • v.10 no.3
    • /
    • pp.28-33
    • /
    • 2007
  • The structural and optical properties of Ni-doped transparent glass-ceramics are reviewed. The quantum efficiencies of ceramics were examined to explore suitable crystalline phase for Ni-doping in glass-ceramics. Inverse spinel $LiGa_5O_8$ have the quantum efficiency of almost 100 % at room temperature. Transparent glass ceramics containing $LiGa_5O_8$ was successfully synthesized by heat treatment of $Li_2O-Ga_2-O_3-SiO_2-NiO$ glass. Most of $Ni^{2+}$ ions in glass-ceramic were incorporated into $LiGa_5O_8$ nanocrystals. The near-infrared emission covering from the O-band to L-band (1260-1625 nm) was observed from the Ni-doped $Li_2O-Ga_2O_3-SiO_2$ glass-ceramic though it was not observed from the as-cast glass. The lifetime of the emission was about $580\;{\mu}sec$ even at 300K. The emission quantum efficiency was evaluated as about 10 % that is enough high for practical usage as gain media of optical fiber amplifiers. The figure of merit (the product of the stimulated emission cross section and lifetime) was as high as that of rare-earth-doped glasses. The broad bandwidth, high quantum efficiency and high figure of merit show that transparent glass-ceramics containing $Ni^{2+}:LiGa_5O_8$ nanocrystals are promising candidates as novel ultra-broadband gain media.

  • PDF

Microstructure and Processing of Bioactive Ceramic Composites as Dental Implants (치과 임플란트용 bioactive 세라믹 복합재료의 제조와 미세조직)

  • Kim, Bu-Sob
    • Journal of Technologic Dentistry
    • /
    • v.25 no.1
    • /
    • pp.21-28
    • /
    • 2003
  • The purpose of this study was to process bio-active glass ceramic composite, reinforced with sapphire fibers, by hot press. Also to study the interface of the matrix and the sapphire fiber, and the mechanical properties. Glass raw materials melted in Pt crucible at 1300$^{\circ}C$ during 3.5 hours. The melt was crushed in ball mill and then crushed material, ground and sieved to $<40{\beta}{\mu}m$. Sapphire fibers cut (30mm) and aligned. Powder and fibers hot pressed. The micrographs show good bonding between the matrix and the fiber and no porosity in the glass matrix. This means ideal fracture phenomena. Glass is fractured before the fiber. This is indication of good fracture strength. EDXS showing aluminum rich phase and crystalline phase. Bright field image of the matrix showing crystalline phase. Also diffraction pattern of TEM showing the crystalline phase and more than one phase. Strength of the samples was determined by 3 point bend testing. Strength of the 10vol% sample was approximately 69MPa, while strength of the control sample is 35MPa. Conclusions through this study as follow: 1. Micrographs show no porosity in the glass matrix and the interface. 2. The interface between the fiber and the glass matrix show no gaps. 3. Fracture of the glass indicates characteristic fiber-matrix separation. 4. Presence of crystalline phase at high processing temperature. 5. Sapphire is compatible with bioactive glass.

  • PDF

Status of Quartz Glass Crucible (석영유리 도가니 국내외 현황)

  • Noh, Sunghun;Kang, NamHun;Yun, Heuikeun;Kim, Hyeong-Jun
    • Ceramist
    • /
    • v.22 no.4
    • /
    • pp.452-463
    • /
    • 2019
  • A quartz glass crucible is the essential material for manufacturing silicon ingots such as semiconductors and solar cells. Quartz glass crucibles for semiconductors and solar cells are made similar, but differ in surface purity, structure and durability. Recently, ultra high purity synthetic glass crucibles for semiconductors have become more important due to foreign problems. In Korea, it has succeeded in producing 28-inch quartz glass crucibles through the past 10 years. However, 32-inch synthetic quartz glass for the production of silicon ingots for semiconductors is not up to the level of advanced technology, and the technology gap is expected to be 2 to 3 years. In order to overcome these technological gaps and localize synthetic quartz glass ware, close cooperation between production companies and demand companies and localization of synthetic quartz glass powder must also be made. In addition, if government support can be added, faster results can be expected.

Control of De-Lamination Phenomena in LTCC Zero-Shrinkage by Glass Infiltration Method

  • Jo, Tae-Jin;Yeo, Dong-Hun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.1
    • /
    • pp.23-26
    • /
    • 2012
  • A zero-shrinkage sintering process in which the shrinkage of x-y axis is controlled to be zero is in great demand due to the trend of high integration in the ceramic modules. Among the zero-shrinkage sintering processes that are available, the proposed glass infiltration method where the viscous but fluidic glass infiltrates of the $Al_2O_3$ particles in the structure of $Al_2O_3$/glass/$Al_2O_3$ during firing is one of the applicable methods. However, the above proposed glass infiltration method has the problem of the warpage-like delamination. This occurred at the outermost surface of the multiple-bundle substrate. It is thought that the decomposed gas rapidly expands in low viscous glass to create vacant space. To solve this problem, the vacant space was tamped with $Al_2O_3$ particles to lead to the actual improvement of the sintered properties. With 15 wt% of tamping $Al_2O_3$ particles in glass, most of the vacant space disappeared. Fully densified zero-shrinkage substrate without delamination can be obtained.

Crystallization of 90wt% Cordierite-10wt% Enstatite Melt by $TiO_2$ Addition (90wt% Cordierite-10wt% Enstatite 총체의 $TiO_2$ 첨가에 의한 결정화)

  • Rhee, Jhun;Han, Duck-Huyn;Jo, Dong-Soo;Jun, Jong-Pil
    • Journal of the Korean Ceramic Society
    • /
    • v.23 no.5
    • /
    • pp.9-16
    • /
    • 1986
  • The effect of $TiO_2$ addition to the 90wt% Cordierite-10wt% Enstatite base glass was investi-gated to understand the crystallization behavior of the glass. Glasses with addition of $TiO_2$ less than 7, 5wt% had a tendency of surface crystallization and were cracked when heat treated and in this case the crystalline phase formed was indialite. glasses with addition of $TiO_2$ more than 10wt% to 15wt% were crystallized in bulk when heat treated and were suitable for glass-ceramics. The highest microhardness 1640kg/$mm^2$ was obtained when the glass of 12.5wt% $TiO_2$ addition was heat treated at 762$^{\circ}C$ for 60 minutes for nucleation and at 1135$^{\circ}C$ for 20 minutes for crystal growth and in general higher microhardness was obtained when crystalline phase of magnesium aluminum titanate and $\mu$-cordierite were developed. Avrami equation for crystal growth kinetics was applicable in glasses of less than 7.5 wt% $TiO_2$ addition and in case of glasses of more than 10wt% $TiO_2$ addition it was not applicable because of too fast crystal growth.

  • PDF