• Title/Summary/Keyword: Glass transition

Search Result 1,069, Processing Time 0.04 seconds

GAS PERMEATION THROUGH GLASSY POLYMER MEMBRANES WITH HIGH GLASS-TRANSITION TEMPERATURE

  • Kumazawa, Hidehiro
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1993.10a
    • /
    • pp.13-20
    • /
    • 1993
  • The sorption equilibria and permeation rates for carbon dioxide in such glassy polymer membranes with high glass-transition temperature as polyimide, polyetherimide, polysulfone and polyethersulfone membranes, were measured. The sorption isotherms for these systems can be described well by the dual-mode sorption model, whereas the pressure dependences of the mean permeability coefficients are simulated better by a modified dual-mode mobility model than the conventional dual-mode mobility model in which the Henry's law and Langmuir populations execute four kinds of diffusive movement.

  • PDF

Advances in High TG Hole Transporters

  • Gelsen, Olaf;Lischewski, V.;Leonhardt, J.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.355-356
    • /
    • 2006
  • The glass transition behavior of OLED materials is very important for both processing and lifetime. We report about the correlation between the structure of selected small molecule Hole Transport Materials (HTM's) and their glass transition temperature. The thermal stability of devices manufactured with them was investigated. The results give researchers and engineers some information which are helpful for designing new molecules and processing them in device making.

  • PDF

Strain Rate Dependency of Deformation Behavior in $Zr_{55}Cu_{30}Al_{10}Ni_{5}$ Bulk Metallic Glass ($Zr_{55}Cu_{30}Al_{10}Ni_{5}$ 벌크 유리상 금속 변형거동의 변형률속도 의존성)

  • Shin, Hyung-Seop;Jeong, Young-Jin;Ko, Dong-Kyun;Oh, Sang-Yeob
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1145-1150
    • /
    • 2003
  • Zr-based bulk metallic glasses have a significant mechanical properties such as high strength and elastic strain limit, and a good processing ability due to the deformation behavior such as superplasticity under supercooled liquid region. Recently, many researches on the determination of optimum working condition in various bulk metallic glasses have been carried out. In this study, the deformation behavior and forming conditions of $Zr_{55}Cu_{30}Al_{10}Ni_{5}$ bulk metallic glass were investigated under three different strain rates and at various temperatures between 627K and 727K. The glass transition temperature, crystallization temperature and supercooled liquid region of $Zr_{55}Cu_{30}Al_{10}Ni_{5}$ bulk metallic glass are 680K, 762K and 82K, respectively.

  • PDF

Structural, Optical, and Chemical Properties of Cadmium Phosphate Glasses

  • Chung, Jae-Yeop;Kim, Jong-Hwan;Choi, Su-Yeon;Park, Hyun-Joon;Hwang, Moon-Kyung;Jeong, Yoon-Ki;Ryu, Bong-Ki
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.2
    • /
    • pp.128-132
    • /
    • 2015
  • In this study, we prepared cadmium phosphate glasses with various compositions, given by $xCdO-(100-x)P_2O_5$ (x = 10-55 mol%), and analyzed their Fourier transform infrared spectra, dissolution rate, thermal expansion coefficient, glass transition temperature, glass softening temperature, and optical band gap. We found that the thermal expansion coefficient and dissolution rate increased while the glass transition temperature and glass softening temperature decreased with increasing CdO content. These results suggest that CdO acts as a network modifier in binary phosphate glass and weakens its structure.

Effect of Aminosiloxane Modifier on Chemorheological Properties of Ortho-cresol Novolac Epoxy (Ortho-cresol Novolac형 에폭시의 화학레올로지 특성에 미치는 아민 개질제의 영향)

  • 김윤진;안병길;김우년;서광석;김환건;윤초규
    • Polymer(Korea)
    • /
    • v.26 no.1
    • /
    • pp.88-97
    • /
    • 2002
  • The effect of aminosiloxane modifier on the chemorheological properties of ortho-cresol novolac epoxy/phenol novelac/triphnylphosphine resin system was investigated aat different isothermal curing temperatures. By adding the aminosiloxane to the resin system, not only conversion rate and conversion were increased but also glass transition temperature was promoted. Critical conversion and gelation time obtained at the crossover point between storage and loss moduli were reduced and thus the viscosity was increased by the aminosiloxane. $C_1$ and $C_2$ in the WLF equation calculated from the glass transition temperature as a function of conversion and measured viscosity were found to vary with the curing temperature. By applying the change of glass transition temperature with conversion, $C_1$ and $C_2$ to WLF equation, it was possible to predict accurately the viscosity change with isothermal curing reaction.

Current Status of Quartz Glass for Semiconductor Process (반도체 공정용 석영유리 현황)

  • Kim, Hyeong-Jun
    • Ceramist
    • /
    • v.22 no.4
    • /
    • pp.429-451
    • /
    • 2019
  • Quartz glass is a key material for making semiconductor process components because of its purity, low thermal expansion, high UV transmittance and relatively low cost. Domestic quartz glass has a market worth about 500 billion won in 2018, and the market power of Japanese materials is very high. Quartz glass for semiconductor process can be divided into general process and exposure. For general process, molten quartz glass is mainly used, but synthetic quartz glass with higher purity is preferred. Synthetic quartz glass is used as the photomask for the exposure process. Recently, as semiconductors started the sub-nm process, the transition from the transmission type using ArF ultraviolet (194 nm) to the reflection type using EUV ultraviolet (13.5 nm) began. Therefore, the characteristics required for the synthetic quartz glass substrates used so far are also rapidly changing. This article summarizes the current technical trends of quartz glass and recent technical issues. Lastly, the present situation and development possibility of quartz glass technology in Korea were diagnosed.

Evolution of the Vortex Melting Line with Irradiation Induced Defects

  • Kwok, Wai-Kwong;L. M. Paulius;Christophe Marcenat;R. J. Olsson;G. Karapetrov
    • Progress in Superconductivity
    • /
    • v.3 no.1
    • /
    • pp.5-12
    • /
    • 2001
  • Our experimental research focuses on manipulating pinning deflects to alter the phase diagram of vortex matter, creating new vortex phases. Vortex matter offers a unique opportunity for creating and studying these novel phase transitions through precise control of thermal, pinning and elastic energies. The vortex melting transition in untwinned YB $a_2$C $u_3$ $O_{7-}$ $\delta$/ crystals is investigated in the presence of disorder induced by particle irradiation. We focus on the low disorder regime, where a glassy state and a lattice state can be realized in the same phase diagram. We follow the evolution of the first order vortex melting transition line into a continuous transition line as disorder is increased by irradiation. The transformation is marked by an upward shift in the lower critical point on the melting line. With columnar deflects induced by heavy ion irradiation, we find a second order Bose glass transition line separating the vortex liquid from a Bose glass below the lower critical point. Furthermore, we find an upper threshold of columnar defect concentration beyond which the lower critical point and the first order melting line disappear together. With point deflect clusters induced by proton irradiation, we find evidence for a continuous thermodynamic transition below the lower critical point..

  • PDF

Photoresponsive Liquid Crystalline Copolymers Bearing a p-Methoxyazobenzene Moiety

  • 최동훈;강석훈;이준열;Asit Baran Samui
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.11
    • /
    • pp.1179-1184
    • /
    • 1998
  • Mesogenic and azo monomers were synthesized and copolymerized to obtain two copolymers composed of methacrylate and itaconate backbone. Glass transition temperatures of the copolymers were found to be slightly higher than ambient temperature. Both the copolymers showed liquid crystalline properties. Trans-cis isomerization in film state was observed under UV-irradiation with a light of 365 nm. Regarding the photochemical phase transition behavior, the transition rate of nematic-to-isotropic state was slightly faster in the methacrylate copolymer during irradiation at 365 nm and the rate of the reverse transition was much faster in itaconate copolymer under thermal effect.

Influence of Chemical composition of Ethylene-Vinyl Acetate Copolymers on Impact Noise Damping of Composites (에틸렌-초산비닐 공중합체의 공중합 조성이 복합체의 충격음 흡수성능에 미치는 영향)

  • 이현종
    • Journal of Korea Foresty Energy
    • /
    • v.18 no.2
    • /
    • pp.55-61
    • /
    • 1999
  • This study was carried out to investigate the influence of viscoelastic properties(or chemical composition) of a series of ethylen-viny1 acetate copolymers on impact noise and vibration damping of wood/polymer/wood sandwich composites. The impact noise and vibration damping of composites were very sensitive to the state of molecular motion of polymer. The noise and vibration damping of composites were maximum when the polymer was under the glass transition(vinylacetate 55~75%) at the test-temperature, and minimum rubbery state(vinyl-acetate 47~20%) or glassy state(vinylacetate 100~87%). The polymer under glass transition reduced the impact noise by 6~12 dB.

  • PDF

Melting Point of Amorphous Copper Phase on Crystalline Silicon Solar Cells During Cold Spray using Molecular Dynamics Calculations (분자 동역학 계산을 통한 결정질 실리콘 태양전지 기판에 콜드 스프레이 전극 형성 시 발생되는 비정질 구리상에 대한 용융 온도 변화 연구)

  • Kim, Soo Min;Kang, Byungjun;Jeong, Sujeong;Kang, Yoonmook;Lee, Hae-seok;Kim, Donghwan
    • Current Photovoltaic Research
    • /
    • v.3 no.2
    • /
    • pp.61-64
    • /
    • 2015
  • In solar industry, numerous researchers reported about cold spray method among various electrode formation technic, but there are no known a bonding mechanism of metal powder. In this study, a cross-section of copper electrode formed by cold spray method was observed and heterogeneous phase between silicon substrate and copper electrode was analyzed using morphology observation technic. SEM and TEM analysis were performed to analyze a crystallinity and distribution shape of heterogeneous copper phase. Molecular dynamics simulation was performed to calculate glass transition temperature of copper metal. In the result, amorphous copper phase was observed near interface between silicon substrate and metal electrode. The results of the molecular dynamics simulation show that an amorphous copper phase could be formed at a temperature below the melting point of copper because cold spraying resulted in a lower glass transition temperature.