• Title/Summary/Keyword: Glass transition

Search Result 1,066, Processing Time 0.034 seconds

Supercooled Liquid, Glass and Glass Transition (과냉각 액체, 유리 그리고 유리 전이)

  • Kim, Hack-Jin
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.2
    • /
    • pp.99-110
    • /
    • 2009
  • Characteristics of supercooled liquid and glass, which are the states involved in glass transition, are reviewed. These states are non-equilibrium states, therefore, the glass transition is different from the usual phase transitions. Theories of glass transition and related experimental methods are briefly summarized.

Study for Local Glass Transition of Bulk Metallic Glasses using Atomic Strain (원자변형률을 이용한 비정질 금속의 천이온도에 관한 연구)

  • Park, Jun-Young
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.5
    • /
    • pp.104-109
    • /
    • 2011
  • Bulk metallic glasses (BMG) have been greatly improved by the advance of synthesis process during last three decades. It was also found that the Glass Forming Ability (GFA) strongly depends on the glass transition temperature. When the temperature approaches to a critical value, the crystals nucleation from the supercooled liquid can be suppressed so that bulk glass formation possible. Egami and others found that the local glass transition temperature depends on the volumetric strain of each atom and suggested the critical transition temperature. In this paper, we explore the strain dependency of local glass transition temperature using the atomic strain defined by the deformation tensor for the Voronoi polyhedra.

Effects of Transition Temperature and Atomic Ratio on Glass Formation Tendency in the PbO-B$_2$O$_3$-TiO$_2$-BaO System (PbO-B$_2$O$_3$-TiO$_2$-BaO계의 유리화에 대한 전이온도 및 성분 원소비의 영향)

  • 이선우;심광보;오근호
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.12
    • /
    • pp.1274-1279
    • /
    • 1998
  • The glass forming ability of the PbO-B2O3-TiO3-BaO system was investigated in relation to transitieon tem-peratures and the atomic ratio between constituents. Glass forming tendency was improved as the tem-peratures and the atomic ratio between constituents. Glass forming tendency was improved as the tem-perature differences between liquidus temperature and crystallization(or glass transition) temperature de-creased and the temperature difference between crystallization and glass transition temperature increases. The atomic ratio could be used as a criterion to deign glass systems. The interposition of B and Ba atoms between Pb and Ti atoms was one of important factors in glass formation.

  • PDF

The Effect of DSC Analysis Condition on the Glass Transition Temperature of curred Epoxy This paper studies on the effect of DSC(Differential Scanning Calorimeter) analysis condition on the glass transition temperature of silica filled epoxy network polymer used for ultra-high voltage apparatus. The effects of temperature scanning rate specimen size and gas flow rate on measured glass transition temperature have been studied in order to select optimum thermal analysis condition. (에폭시 경화물 DSC에 의한 유리전이 온도 측정의 분석조건 의존성)

  • 오무원;권혁삼
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1994.05a
    • /
    • pp.30-33
    • /
    • 1994
  • This paper studies on the effect of DSC(Differential Scanning Calorimeter) analysis condition on the glass transition temperature of silica filled epoxy network polymer used for ultra-high voltage apparatus. The effects of temperature scanning rate specimen size and gas flow rate on measured glass transition temperature have been studied in order to select optimum thermal analysis condition.

  • PDF

Change of Glass Transition Temperature of PETG Containing Gas (가스를 포함하는 고분자 재료(PETG)의 유리전이온도 변화)

  • Cha, Seong-Un;Yun, Jae-Dong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.4 s.175
    • /
    • pp.824-829
    • /
    • 2000
  • The industries use polymer materials for many purposes because they have many merits. But these materials' costs take up too much proportion in overall cost of products that use these materials as their major material. So it is very economical for polymer industries to reduce these costs. Microcellular foaming process appeared in 1980's to solve this problem and it proved to be quite successful. This process uses inert gases such as CO2, N2. As these gases are dissolved into polymer matrices. many properties are changed. Glass transition temperature is one of these properties. DSC, DMA are devices that measures this temperature, but these are not sufficient to measure the temperature of polymer containing gas. In this paper, we devised a new tester that uses magnetism. We used this device to acquire data of the change of glass transition temperature and made Cha-Yoon model that can predict the change of glass transition temperature. Using this model, the change of this temperature can be estimated as a function of weight gain of gas. Cha-Yoon model proved that Chow's model is inappropriate to predict the change of glass transition temperature of polymer matrices containing gas.

Glass Transition Behavior of Dendritic Polymers Containing Mobile Aliphatic Polyether Cores and Glassy Peripheral Polystyrenes

  • Song, Jie;Cho, Byoung-Ki
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.6
    • /
    • pp.1167-1172
    • /
    • 2008
  • We investigated the glass transition temperatures ($T_g$) of dendrons consisting of conformationally mobile aliphatic polyether dendritic cores plus glassy peripheral polystyrenes (PSs), and linear PSs in the molecular weight range of 1000-8500 g/mol. We compared their $T_g$ behavior depending on their polymeric architecture. The linear PSs show a typical growth of $T_g$ up to 92.5 ${^{\circ}C}$ as the molecular weight increases to 8300 g/mol, while the dendrons display nearly constant $T_g$ values of 58-61 ${^{\circ}C}$, despite the increase of molecular weight with each generation. The striking contrast of Tg behavior would be mainly attributed to the fact that the dendrons keep the ratio of $N_e$/M ($N_e$: number of peripheral chain ends, M: molecular weight) over all the generations. Additionally, for the influence of dendritic spacers on glass transition temperature we prepared dimeric PSs with different linkage groups such as aliphatic ether, ester and amide bonds. We found that the dimer with the ether spacer exhibited the lowest glass transition at 55.4 ${^{\circ}C}$, while the amide linked dimer showed the highest glass transition temperature at 74.2 ${^{\circ}C}$. This indicates that the peripheral PS chains are effectively decoupled by the conformationally flexible ether spacer. The results from this study demonstrated that polymeric architecture and dendritic core structures play a crucial role in the determination of glass transition behavior, providing a strategy for the systematic engineering of polymer chain mobility.

The Effect of Gas Absorption Induced a Change of Glass Transition Temperature in Microcellular Foamed Plastics (초미세 발포 플라스틱의 유리전이온도를 변화시키는 가스 용해량의 영향)

  • Hwang, Yun-Dong;Cha, Seong-Un
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.5
    • /
    • pp.816-822
    • /
    • 2001
  • The thermoforming process is widely used in the plastics industry to produce articles for the packaging, automotive, domestic construction and leisure industries. The microcellular foaming process appeared at M.I.T. in 1980s to save a quantity of polymer materials and increase their mechanical properties. The glass transition temperature of polymer materials is one of many important process variables in appling the microcellular foaming process to the conventional thermoforming process. The goal of this research is to evaluate the relation between gas absorption and glass transition temperature in batch process using microcellular foaming process. The weight gain ratio of polymer materials has a conception of gas absorption. Polymers such as acrylonitrile-butadiene-styrene(ABS), polystyrene(PS) have been used in this experiment. According to conventional Chows model and Cha-Yoon model, it was estimated with real experimental result to predict a change of glass transition temperature as a function of the weight gain ratio of polymer materials in batch process to gain microcellular foamed plastic products.

A Parametric Study on the Glass Transition and Mechanical Properties of CNT Based Nanocomposites Using Molecular Dynamics Simulation (분자동역학 전산모사를 이용한 나노튜브 강화 복합재료의 유리전이와 기계적 물성에 관한 파라메트릭 연구)

  • Yang, Seung-Hwa;Cho, Maeng-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.421-426
    • /
    • 2007
  • A parametric study to investigate the effects of composition variables on the glass transition and mechanical properties of CNT-based nanocomposites was performed using molecular dynamics simulations. In this study, matrix chain length and CNT length were chosen as the candidate characteristic parameters. In order to understand the effect of both parameters in detail, three sample sets having different chain lengths with the same CNT configuration and two sample sets having different CNT lengths with same chain length were prepared. Other parameters such as volume fraction and density were fixed to enable rigorous comparisons. Amorphous polyethylene is used as matrix polymer and (10,0) zigzag CNT is embedded into the matrix to reinforce polymer matrix. As a result, longer polymer chain length of matrix solely increased glass transition temperature but no reinforcing enhancement was observed. CNT length showed similar increase with little enhancement of elastic modulus. In addition to this, nanocomposites showed temperature-dependent elastic modulus jump passing thorough the glass transition region agrees well with experimental results.

  • PDF

Glass Transition Temperature of Honey Using Modulated Differential Scanning Calorimetry (MDSC): Effect of Moisture Content

  • Kim, Mi-Jung;Yoo, Byoung-Seung
    • Preventive Nutrition and Food Science
    • /
    • v.15 no.4
    • /
    • pp.356-359
    • /
    • 2010
  • Glass transition phenomena in nine Korean pure honeys (moisture content 18.3~20.1%) and honey-water mixtures by different water contents (0, 2, 5, and 10% w/w) were investigated with modulated different scanning calorimetry (MDSC). The total, reversing, and non-reversing heat flows were quantified during heating using MDSC. Glass transition was observed from reversing heat flow separated from the total heat flow. The glass transition temperatures ($T_g$) of pure honeys, which are in the range of $-42.7^{\circ}C$ to $-50.0^{\circ}C$, varied a lot with low determination coefficient ($R^2$=0.63), whereas those of honey-water mixtures decreased with a decrease in honey content. The $T_g$ values were also more significantly different among honey-water mixtures when compared to pure honeys, indicating that in the honey-water mixture system the $T_g$ values appear to be greatly dependent on moisture content. The measured heat capacity change (${\Delta}C_p$) was not influenced by moisture content.

Micro-Brillouin Spectroscopy Applied to the Glass Transition of Anti-inflammatory Egonol

  • Kim, Tae-Hyun;Ko, Jae-Hyeon;Kwon, Eun-Mi;Jun, Jong-Gab
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.403-408
    • /
    • 2010
  • The acoustic properties of anti-inflammatory egonol were investigated by using micro-Brillouin scattering spectroscopy, by use of a 6-pass tandem Fabry-Perot interferometer and an optical microscope specially modified for spectroscopic purposes. The measured Brillouin spectrum was composed of a central peak centered at zero and a Brillouin doublet arising from the longitudinal acoustic waves, i.e. propagating density fluctuations. For the first time, the glass transition of egonol was identified to be about $5^{\circ}C$ at which the Brillouin peak position and the half width showed abrupt changes. The substantial damping of acoustic phonons of egonol near the glass transition temperature indicated that the contribution of internal relaxation processes such as small-amplitude librations of side chains to the damping of acoustic phonons may be substantial depending on the internal structure of molecules.