• Title/Summary/Keyword: Glass mold

Search Result 297, Processing Time 0.025 seconds

A Study on the Aspheric Glass tens Forming Analysis in the Progressive GMP Process

  • Chang, Sung-Ho;Lee, Young-Min;Shin, Kwang-Ho;Heo, Young-Moo
    • Journal of the Optical Society of Korea
    • /
    • v.11 no.3
    • /
    • pp.85-92
    • /
    • 2007
  • In the past, precision optical glass lenses were produced through multiple processes such as grinding and polishing, but mass production of aspheric glass lenses requiring high accuracy and having complex profile was rather difficult. In such a background, the high-precision optical glass molding pressing (GMP) process was developed with an eye to mass production of precision optical glass parts by molding press. In this paper, as a fundamental research to develop the multi-cavity mold for higher productivity of a progressive GMP process used in the fabrication of an aspheric glass lens, an aspheric glass lens forming simulation was carried out.

Experimental and Computational Study on the Mold Shrinkage of PPS Resin in Injection Molded Specimen

  • Pak, Hyosang;Sim, Hyojin;Oh, Hyeon-Kyung;Lee, Guen-Ho;Kang, Min-A;Lyu, Min-Young
    • Elastomers and Composites
    • /
    • v.55 no.2
    • /
    • pp.120-127
    • /
    • 2020
  • In this study, molding shrinkage of PPS resin was investigated. Two types of PPS resins with differing glass fiber and calcium carbonate content were used for this purpose. To observe mold shrinkage, molding conditions based on injection temperature, injection speed, and the position of the cushion were selected. Circular and rectangular specimens were used for the study model. Injection molding simulation was performed to predict the filling pattern and mold shrinkage, and the simulation results were compared with the experimental conclusions. It was observed that the mold shrinkage showed the highest shrinkage (distributed from 0.05% to 0.32%) dependence on the injection temperature, and the lowest shrinkage (distributed from 0.05% to 0.31%) dependence on the injection speed. The role of the position of the cushion in mold shrinkage was difficult to observe. The results of the simulation mostly agreed with the experimental results; however, for some molding conditions, the mold shrinkage in the simulation was overestimated as compared to that in the experiment.

Evaluation on Liquid Formability of Bulk Amorphous Alloys (벌크비정질합금의 액상 성형성 평가)

  • Joo, Hye-Sook;Kang, Bok-Hyun;Kim, Ki-Young
    • Journal of Korea Foundry Society
    • /
    • v.26 no.5
    • /
    • pp.227-231
    • /
    • 2006
  • Liquid formability of bulk amorphous alloys is known to be very poor due to their high viscosity comparing with conventional metallic materials. It is important to have the fabricating technology of bulk amorphous alloys in order to make the components with complicated shape. Liquid formability includes the mold cavity filling ability and the hot tear(crack) resistance during solidification. A mold made of a commercial tool steel for the formability test was designed. Melting was performed by the arc melting furnace with melting capacity of 200 g in an argon atmosphere. Liquid formability and glass forming ability of Cu base and Ni base bulk amorphous alloys were measured and evaluated. Mold filling ability of Ni-Zr-Ti-Si-Sn alloy was better than that of Cu-Ni-Zr-Ti alloy, however the reverse is the hot tear resistance. Bulk amorphous alloy is very susceptible to crack if partial crystallization occurs during solidification. Crack resistance was thought to be closely related with the glass forming ability.

A study on optimal cutting conditions of MCD or NCD coated ball end-mills for finishing (MCD 및 NCD 코팅 볼 엔드밀의 정삭가공에서의 최적절삭조건에 관한 연구)

  • Jong-Su Kim
    • Design & Manufacturing
    • /
    • v.16 no.4
    • /
    • pp.17-23
    • /
    • 2022
  • Recently, several studies are being conducted to achieve a curvature of 180° or more for the edge of the display glass. The thermocompression molding process is applied to the manufacture of curved glass, and high hardness G5 graphite is used as the mold material to withstand the impact applied to the mold. G5 graphite has high hardness and strong brittleness, which makes tool wear and surface damage easy during machining. Therefore, the demand for diamond-coated tools with good mechanical properties is increasing in the G5 machining field. In this study, the optimal cutting conditions and machinability of a nanodiamond (NCD) coated ball end mill being developed by a tool manufacturer were analyzed and evaluated. For this purpose, the same test was performed on the microdiamond (MCD) coated ball end mill and compared together. In summary, the machinability of MCD and NCD coated tools showed better cutting performance at a cutting speed of 282 m/min, a feed rate of 1,400 mm/min, and a radial depth of cut of 0.08 to 0.1 mm.

An Efficient Method for Mold Thermal Cycle Analysis in Repeated Forming Process of TV Glass (TV 유리의 반복 성형공정에서 금형 열사이클 해석을 위한 효과적 방법)

  • Choi, Joo-Ho;Kim, Jun-Bum;Hwang, Jung-Hea;Ha, Duk-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.9
    • /
    • pp.1219-1226
    • /
    • 2000
  • An efficient method is developed for plunger thermal cycle analysis in repeated forming process of the TV glass. The plunger undergoes temperature fluctuation during a cycle due to the repeated contact and separation from the glass, which attains a cyclic steady state having same temperature history at every cycle. Straightforward analysis of this problem brings about more than 80 cycles to get reasonable solution, and yet hard to setup stopping criteria due to extremely slow convergence. An exponential fitting method is proposed to overcome the difficulty, which finds exponential function to best approximate temperature values of 3 consecutive cycles, and new cycle is restarted with the fitted value at infinite time. Numerical implementation shows that it reduces the number of cycles dramatically to only 6-18 cycles to reach convergence within 10 accuracy. A system for the analysis is constructed, in which the thermal analysis is performed by commercial software ANSYS, and the fitting of the result is done by IMSL library. From the parametric studies, one reveals some important facts that although the plunger cooling or the glass thickness is increased, its counter part in contact is not much affected, duo to the low thermal conductance of the glass.

High-performance Barrier Rib Formation Processes for High-efficiency PDPs

  • Toyoda, Osamu;Tokai, Akira;Kifune, Motonari;Inoue, Kazunori;Sakita, Koichi;Betsui, Keiichi
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.215-219
    • /
    • 2004
  • We reported two new techniques of barrier rib formation that are applicable to a variety of structures for high-efficiency PDPs suitable for mass-production [1]. These two methods are mold replication and direct glass sculpting. Especial progress has since been made in improving these methods to be more suitable for high-efficiency PDPs with the DelTA cell structure. This paper reports photolithographic fabrication methods for the masters used in mold replication. The masters for more complex barrier rib forms are easier to make with these methods. The paper also reports a process that combines the direct glass sculpting method with an ink-jet printing method of electrode formation.

  • PDF

A Study on Material Characterization and Mechanical Properties of SMC Compression Molding Parts (SMC 압축성형재의 기계적 물성 및 특성에 관한 연구)

  • 김기택;임용택
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.9
    • /
    • pp.2396-2403
    • /
    • 1994
  • An experimental study on material characterization and mechanical properties of SMC(Sheet Molding Compounds) compression method parts was carried out. Simple compression test using grease oil as a lubricant was carried out to characterize flow stress of SMC at elevated temperatures. Two different mold temperatures, $130^{\circ}C{\;}and{\;}150^{\circ}C$ and two different mold speeds, 15, 45 mm/min were used for preparing the specimen of SMC compression molded parts. Surface roughness, tensile, and 3-point bending tests were used to determine the effects of molding temperatures and speeds on mechanical properties of compression molded SMC parts. Orientation and distribution of glass fiber in the compression molded SMC parts were also investigated by photographing the burnt flat specimen and taking SEM(Scanning Electron Microscope) of cross-sectional T-specimen.

Ultraprecision Machining of Glassy Carbon (Glassy Carbon의 초정밀 가공)

  • Hwang, Yeon;Lee, Hyeon-Sung;Kim, Hye-Jeong;Kim, Jeong-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.3
    • /
    • pp.19-23
    • /
    • 2012
  • Glassy carbon is widely used for high temperature melting process such as quartz due to its thermal stability. For utilizing Classy Carbon to glass mold press(GMP) optical lens, brittleness of Glassy Carbon is main obstacle of ultraprecision machining. Thus authors investigated ductile machining of Glassy Carbon adopting turning and grinding process respectively. From the experiments, ultraprecision turning surfaces resulted brittle crack in all machining conditions and ultraprecision grinding surfaces showed semi-ductile mode in small undeformed chip thickness conditions.

Study on Optimal Grinding Condition of Tungsten Carbide(Co 0.5%) using DOE (DOE를 적용한 WC(Co 0.5%)의 최적 연삭가공조건 연구)

  • Kim H.U.;Jeong S.H.;Cha D.H.;Ahn J.H.;Kim S.S.;Kim H.J.;Kim J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.221-222
    • /
    • 2006
  • In recent years, the demands of the aspherical glass lenses increase since it is difficult to obtain the desirable performance in the plastic lens. Glass lens is manufactured by the forming with high precision mold core. This paper presents the analysis of optimal grinding condition of tungsten carbide(WC, Co0.5%) using design of experiments(DOE). The process parameters are turbin spindle, work spindle, feedrate and depth of cut. The experiments results are evaluated by MINITAB software.

  • PDF

Cu-based Bulk Amorphous Alloys in the Cu-Zr-Ti-Ni-Pd System (Cu-Zr-Ti-Ni-Pd계 비정질 벌크합금의 형성과 성질)

  • Kim, Sung-Gyoo;Bae, Cha-Hurn
    • Journal of Korea Foundry Society
    • /
    • v.22 no.6
    • /
    • pp.304-308
    • /
    • 2002
  • The new Cu-Zr-Ti-Ni-Pd amorphous alloy system has been introduced and manufactured using melt-spinning and Cu-mold die casting methods. Amorphous formability, the supercooled liquid region before crystallization and mechanical properties of the alloys were examined. The reduced glass transition temperature(Trg = Tg/Tm) and the supercooled liquid region(${\Delta}$Tx = Tx-Tg) of $Cu_{49}Zr_{30}Ti_{10}Ni_5Pb_6$ alloy were 0.620 and 57 K respectively. $Cu_{49}Zr_{30}Ti_{10}Ni_5Pb_6$ amorphous alloy was produced in the rod shape with 2mm diameter using the Cu-mold die casting. The hardness value of the amorphous bulk alloy was 432 DPN.