• Title/Summary/Keyword: Glass machining

Search Result 159, Processing Time 0.028 seconds

Development of Backflow prevented Micropump (역류방지형 유리계 마이크로 펌프 개발)

  • Choi J. P.;Cho K. C.;Kim H. Y.;Kim B. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.229-232
    • /
    • 2005
  • This paper presents the design and fabrication of backflow prevented Micropump using the metal membrane. The Micropump is consisted of the lower plate, metal membrane, upper plate and the piezoelectric-element. The lower plate includes the micro channel and the inlet, outlet of the Micropump. The upper plate includes the micro channel and connects the piezoelectric-element. These plate are fabricated on the Pyrex glass wafer by sandblasting process. The metal membrane does roll of check valve that is prevented backflow of the Micropump. The metal membrane is fabricated on the stainless steel by laser machining. Piezoelectric-element is actuated the Micropump and controlled flowing of fluid. The Micropump is fabricated by bonding process of these multi-layer.

  • PDF

A Making of Aesthetic Dental restorations with Nano Hybrid Ceramic material by CAD/CAM System (치과 CAD/CAM용 Nano Hybrid Ceranic 소재를 이용한 심미 치과보철물의 제작)

  • Choi, Beom-jin
    • Journal of the Korean Academy of Esthetic Dentistry
    • /
    • v.25 no.2
    • /
    • pp.98-108
    • /
    • 2016
  • In recent days, perhaps the biggest driver in new material development is the desire to improve restorations esthetics compared to the traditional metal substructure based ceramics or all-ceramic restorations. Each material type performs differently regarding strength, toughness, effectiveness of machining and the final preparation of the material prior to placement. For example, glass ceramics are typically weaker materials which limits its use to single-unit restorations. On the other hand, zirconia has a high fracture toughness which enables multi-unit restorations. This material requires a long time sintering procedure which excludes its use for fast chair side production. Hybrid ceramic material developed for CAD/CAM system is contained improved nano ceramic elements. This new material, called a Resin Nano Hybrid Ceramic is unique in durability of function and aesthetic base compositions. The new nano-hybrid ceramic material is not a composite resin. It is also not a pure ceramic. The material is a mixture of both and consists of nano-ceramic fillers. Like a composite, the material is not brittle and is fracture resistant. Like a glass ceramic, the material has excellent polish retention for lasting esthetics. The material is easily machined by chair side or in a dental lab side, could be an useful restorative option.

Evaluation of Cutting Characteristics in Bulk Metallic Glasses (벌크비정질합금(BMG)의 절삭특성 평가)

  • Shin, Hyung-Seop;Choi, Ho-Yeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.6
    • /
    • pp.591-598
    • /
    • 2012
  • In this study, the cutting characteristics of bulk metallic glass (BMG) cut using a computer numerically controlled (CNC) lathe were investigated for different insert tool materials and cutting speeds. The surface roughness, chip morphology, cutting forces, and tool wear during turning of $Zr_{50}Cu_{40}Al_{10}$ BMG alloy were examined. Four kinds of tool materials were used to cut an 8-mm-diameter BMG. The examination of the surface roughnesses of the BMG specimens machined at each cutting speed showed that the surface roughness became better as the cutting speed increased, and the tool materials also influenced the surface roughness. The chip morphology investigations showed that the unoxidized BMG chips had serrated curled chips with adiabatic shear bands, while the oxidized chips exhibited local melting and tangling rather than the usual spiral-shaped chips. The cutting force induced during machining of the Zr-based BMG was the largest for the TiN-WC tool, followed by the polycrystalline diamond (PCD) tool. The cermet tool exerted the smallest cutting force.

Experimental Investigations into the Precision Cutting of High-pressured Jet for Thin Multi-layered Material (다층박판재료의 초고압 젯 정밀가공에 대한 실험적 연구)

  • Park, Kang-Su;Bahk, Yeon-Kyeung;Lee, Jung-Han;Lee, Chae-Moon;Go, Jeung-Sang;Shin, Bo-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.7
    • /
    • pp.44-50
    • /
    • 2009
  • High-pressured jetting is now widely used in the advanced cutting processes of polymers, metals, glass, ceramics and composite materials because of some advantages such as heatless and non-contacting cutting. Similarly to the focused laser beam machining, it is well known as a type of high-density energy processes. High-pressured jetting is going to be developed not only to minimize the cutting line width but also to achieve the short cutting time as soon as possible. However, the interaction behavior between a work piece and high-velocity abrasive particles during the high-pressured jet cutting makes the impact mechanism even more complicated. Conventional high-pressured jetting is still difficult to apply to precision cutting of micro-scaled thin work piece such as thin metal sheets, thin ceramic substrates, thin glass plates and TMM (Thin multi-layered materials). In this paper, we proposed the advanced high-pressured jetting technology by introducing a new abrasives supplying method and investigated the optimal process conditions of the cutting pressure, the cutting velocity and SOD (Standoff distance).

A Study on Rapid Fabrication of Micro Lens Array using 355nm UV Laser Irradiation (355nm UV 레이저를 이용한 마이크로 렌즈 어레이 쾌속 제작에 관한 연구)

  • Je, S.K.;Park, S.H.;Choi, C.K.;Shin, B.S.
    • Transactions of Materials Processing
    • /
    • v.18 no.4
    • /
    • pp.310-316
    • /
    • 2009
  • Micro lens array(MLA) is widely used in information technology(IT) industry fields for various applications such as a projection display, an optical power regulator, a micro mass spectrometer and for medical appliances. Recently, MLA have been fabricated and developed by using a reflow method having the processes of micro etching, electroplating, micro machining and laser local heating. Laser thermal relaxation method is introduced in marking of microdots on the surface of densified glass. In this paper, we have proposed a new direct fabrication process using UV laser local thermal-expansion(UV-LLTE) and investigated the optimal processing conditions of MLA on the surface of negative photo-resist material. We have also studied the 3D shape of the micro lens obtained by UV laser irradiation and the optimal process conditions. And then, we made chrome mold by electroplating. After that, we made MLA using chrome mold by hot embossing processing. Finally, we have measured the opto-physical properties of micro lens and then have also tested the possibility of MLA applications.

Elastic Modulus Measurement of a Large Size Digital TV Display Unit (대형 Digital TV용 Display Unit의 강성 측정)

  • Kim Chang-Hoi;Moon Seong-In;Choi Jae-Boons;Kim Young-Jin;Lee Jeoung-Gwen;Koo Ja-Choon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.3 s.168
    • /
    • pp.115-122
    • /
    • 2005
  • As the digital TV markets rapidly growing, many manufacturers introduce large size flat screen TV units. There are two different display types available to large size models which are plasma and TFT-LCD. Since both are constructed with thin large panels that are mostly fragile to even moderate mechanical shock inputs. Some large size panels are severely resonated by the acoustic sound generated TV which deteriorates video quality. Recognizing the potential problems of large displays, accurate measurement of the panels is to be an essential task for the reliable design. Measurement of mechanical properties of a thin large crystallized panel such as TFT-LCD display with traditional material testing equipments is challenging. Since TFT-LCDs are constructed with combination of brittle glass panels, polymer sheets, and liquid crystal, their properties are not only anisotropic but also usually non-linear. Accurate measurement of the properties often requires very expensive facilities. Especially when the size of the test sample is as large as 40-inch or wider, direct measurement cost is prohibitive. Even worse, machining of the large TFT-LCD to make a smaller size specimen that could be fit into a material tester is not possible because of liquid crystal leakage. A new method fer the measurement of elastic modulus of large TFT-LCD panel is presented in this article. The suggested method provides a simple, economic, and user-friendly way fer measuring the elastic modulus of large panels with considerable level of accuracy.

A study on real time inspection of OLED protective film using edge detecting algorithm (Edge Detecting Algorithm을 이용한 OLED 보호 필름의 Real Time Inspection에 대한 연구)

  • Han, Joo-Seok;Han, Bong-Seok;Han, Yu-Jin;Choi, Doo-Sun;Kim, Tae-Min;Ko, Kang-Ho;Park, Jung-Rae;Lim, Dong-Wook
    • Design & Manufacturing
    • /
    • v.14 no.2
    • /
    • pp.14-20
    • /
    • 2020
  • In OLED panel production process, it is necessary to cut a part of protective film as a preprocess for lighting inspection. The current method is to recognize only the fiducial mark of the cut-out panel. Bare Glass Cutting does not compensate for machining cumulative tolerances. Even though process defects still occur, it is necessary to develop technology to solve this problem because only the Align Mark of the panel that has already been cut is used as the reference point for alignment. There is a lot of defective lighting during panel lighting test because the correct protective film is not cut on the panel power and signal application pad position. In laser cutting process to remove the polarizing film / protective film / TSP film of OLED panel, laser processing is not performed immediately after the panel alignment based on the alignment mark only. Therefore, in this paper, we performed real time inspection which minimizes the mechanism tolerance by correcting the laser cutting path of the protective film in real time using Machine Vision. We have studied calibration algorithm of Vision Software coordinate system and real image coordinate system to minimize inspection resolution and position detection error and edge detection algorithm to accurately measure edge of panel.

A Study on the Simulation Analysis of Nozzle Length and Inner Spiral Structure of a Waterjet (워터젯 노즐의 길이와 내부 나선 구조 유무에 따른 유체거동에 관한 전산해석)

  • Gwak, Cheong-Yeol;Shin, Bo-Sung;Go, Jeung-Sang;Kim, Moon-Jeong;Yoo, Chan-Ju;Yun, Dan-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.1
    • /
    • pp.118-123
    • /
    • 2017
  • It is well known that water jetting is now widely used in the advanced cutting processes of polymers, metals, glass, ceramics, and composite materials because of some advantages, such as heatless and non-contacting cutting different from the laser beam machining. In this paper, we proposed the simulation model of waterjet by lengths and the inner spiral structure of the nozzle. The simulation results show that the outlet velocity of the nozzle is faster than the inlet. Furthermore, we found rapid velocity reduction after passing through the outlet. The nozzle of diameter ${\phi}500$ and length 70mm, shows the optimal fluid width and velocity distribution. Also, the nozzle with inner spiral structure shows a Gaussian distribution of velocity and this model is almost twice as fast as the model without spiral structure, within the effective standoff distance (2.5 mm). In the future, when inserting abrasive material into the waterjet, we plan to analyze the fluid flow and the particle behavior through a simulation model.

Design and Manufacture of an Off-axis Aluminum Mirror for Visible-light Imaging

  • Zhang, Jizhen;Zhang, Xin;Tan, Shuanglong;Xie, Xiaolin
    • Current Optics and Photonics
    • /
    • v.1 no.4
    • /
    • pp.364-371
    • /
    • 2017
  • Compared to one made of glass, an aluminum mirror features light weight, compact design, low cost, and quick manufacturing. Reflective mirrors and supporting structures can be made from the same material, to improve the athermal performance of the system. With the rapid development of ultraprecise machining technologies, the field of applications for aluminum mirrors has been developed rapidly. However, most of them are rotationally symmetric in shape, and are used for infrared applications. In this paper, the design and manufacture of an off-axis aluminum mirror used for a three-mirror-anastigmat (TMA) optical system at visible wavelengths is presented. An optimized, lightweight design provides a weight reduction of more than 40%, while the surface deformation caused by earth's gravity can meet the required tolerance. The two pieces of an off-axis mirror can be diamond-turned simultaneously in one setup. The centrifugal deformation of the off-axis mirror during single-point diamond turning (SPDT) is simulated through the finite-element method (FEM). The techniques used to overcome centrifugal deformation are thoroughly described in this paper, and the surface error is reduced to about 1% of the original value. After post-polishing, the form error is $1/30{\lambda}$ RMS and the surface roughness is better than 5 nm Ra, which can meet the requirements for visible-light imaging.