DOI QR코드

DOI QR Code

Evaluation of Cutting Characteristics in Bulk Metallic Glasses

벌크비정질합금(BMG)의 절삭특성 평가

  • Received : 2010.11.16
  • Accepted : 2012.03.30
  • Published : 2012.06.01

Abstract

In this study, the cutting characteristics of bulk metallic glass (BMG) cut using a computer numerically controlled (CNC) lathe were investigated for different insert tool materials and cutting speeds. The surface roughness, chip morphology, cutting forces, and tool wear during turning of $Zr_{50}Cu_{40}Al_{10}$ BMG alloy were examined. Four kinds of tool materials were used to cut an 8-mm-diameter BMG. The examination of the surface roughnesses of the BMG specimens machined at each cutting speed showed that the surface roughness became better as the cutting speed increased, and the tool materials also influenced the surface roughness. The chip morphology investigations showed that the unoxidized BMG chips had serrated curled chips with adiabatic shear bands, while the oxidized chips exhibited local melting and tangling rather than the usual spiral-shaped chips. The cutting force induced during machining of the Zr-based BMG was the largest for the TiN-WC tool, followed by the polycrystalline diamond (PCD) tool. The cermet tool exerted the smallest cutting force.

본 연구에서는 CNC선반을 사용하여 다양한 공구재질과 절삭속도에서 벌크금속유리(BMG)의 절삭 특성을 평가하였다. 선반가공시 Zr-기 BMG의 표면거칠기와 칩 형상을 관찰하여 가공조건에 따른 절삭력과 공구툴 마모 등 절삭 특성을 비교 검토하였다. 직경 8 mm $Zr_{50}Cu_{40}Al_{10}$ BMG시험편의 절삭에는 네 종류의 절삭공구를 사용하였다. 가공후 BMG 시험편의 표면거칠기를 측정하였고, 표면거칠기에 미치는 공구 회전속도의 영향을 조사하였다. 회전속도가 빠를수록 낮은 표면거칠기를 나타내었고, 공구 재질의 영향도 크게 나타났다. 칩 형상의 관찰 결과, 산화를 일으키지 않은 BMG 칩은 단열 전단띠 발생과 함께 나선형상의 형태를 나타내지만, 산화를 일으킨 칩은 국부적으로 용융과 함께 칩들이 뭉치는 현상을 나타내었다. BMG시험편을 가공하는 동안 발생한 절삭력은 TiN-WC에서 가장 큰 값을 나타내고, PCD가 그 다음, Cermet툴에서 가장 작은 값을 나타내었다.

Keywords

References

  1. Inoue, A., 2000, "Stabilization of Metallic Supercooled Liquid and Bulk Amorphous Alloys," Acta Mater, Vol. 48, pp. 279-306. https://doi.org/10.1016/S1359-6454(99)00300-6
  2. Wang, W. H., Dong, C. and Shek, C. H., 2004, "Bulk Metallic Glasses," Mater. Sci. Eng., Vol. 44, pp. 45-89. https://doi.org/10.1016/j.mser.2004.03.001
  3. Schroers, J., 2009, "Processing of Bulk Metallic Glass, Adv. Mater., Vol. 21. pp. 1-32.
  4. Shin, H.-S., Jeong, Y.-J., Choi, H.-Y., Kato, H., Inoue, A., 2007, "Joining of Zr-based Bulk Metallic Glasses using the Friction Welding Method," J. Alloys Compounds, Vol. 434-435, pp. 102-105. https://doi.org/10.1016/j.jallcom.2006.08.129
  5. Shin, H.-S., Park, J.-S., Jung, Y.-C., Ahn, J. H., Yokoyama, Y., Inoue, A., 2009, "Similar and Dissimilar Friction Welding of Zr-Cu-Al Bulk Glassy Alloys," J. Alloys Compounds, Vol. 483, pp. 182-185. https://doi.org/10.1016/j.jallcom.2008.07.231
  6. Shin, H. S., Jung, Y. C., 2010, "Characteristics of Dissimilar Friction Stir Spot Welding of Bulk Metallic Glass to Lightweight Crystalline Metals," Intermetallics, Vol. 18, pp. 2000-2004. https://doi.org/10.1016/j.intermet.2010.03.004
  7. Bakkal, M., Shih, A. J. and Scattergood, R. O., 2004, "Chip Formation, Cutting Forces, and Tool Wear in Turning of Zr-Based Bulk Metallic Glass," Int. J. Machine Tools and Manufacture, Vol. 44, pp. 915-925. https://doi.org/10.1016/j.ijmachtools.2004.02.002
  8. Bakkal, M., Shih, A. J., Samuel, B., McSpadden, S. B., Liu, C. T. and Scattergood, R O., 2005, "Light Emission, Chip Morphology, and Burr Formation in Drilling the Bulk Metallic Glass," Int. J. Machine Tools and Manufacture, Vol. 45, Issues 7-8, pp. 741-752. https://doi.org/10.1016/j.ijmachtools.2004.11.004
  9. Fujita, K., Morishita, Y., Nishiyama, N., Kimura, H. and Inoue, A., 2005, "Cutting Characteristics of Bulk Metallic Glass," Mater. Trans., Vol. 46, No. 12 pp.2856-2863. https://doi.org/10.2320/matertrans.46.2856