• Title/Summary/Keyword: Glass fluctuation

Search Result 29, Processing Time 0.041 seconds

Ordering of manganese spins in photoconducting $Zn_{1-x}Mn_xTe$

  • Kajitani, T.;Kamiya, T.;Sato, K.;Shamoto, S.;Ono, Y.;Sato, T.;Oka, Y.
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1998.06a
    • /
    • pp.39-43
    • /
    • 1998
  • Single crystals of{{{{ { Zn}_{ 1-x} {Mn }_{x }{Te} }}}} with x=0.3-0.6 were prepared by the standard Bridgeman method. Diffuse neutron diffraction intensities due to the short range magnetic ordering is found in the vicinities of 1 1/2 0 reciprocal point and its equivalent point, indicating that the magnetic correlation of the clusters is the type III antiferromangetic one do the F-type Bravais class crystals, being identical with that of {{{{{ Cd}_{ 1-x} {Mn }_{x }Te }}}}. Neutron inelastic scattering measure-ment has been performed for {{{{{ Zn}_{ 0.6} { Mn}_{ 0.4}Te }}}} sample using the cold neutron spectrometer. AGNES. High resolution measurement with the energy resolution of {{{{ TRIANGLE E= +- .01meV}}}} was carried out in the temperature range from 10K to the ambient. Critical scattering, closely related with the spin glass transition, has been observed for the first time in this semimagnetic semi-conductor. The critical scattering is observed at temperatures in the vicinity of the spin glass transition temperature, 17K. The scattering is observed as a kind of quasielastic scattering in the reciprocal range where the elastic magnetic diffuse scattering has been observed, e.g., 11/20 reciprocal point, indicating the spin fluctuation has dynamic components in this material. Photoconductivity has been discovered below 150K in {{{{{ Zn}_{ 0.4} {Mn }_{0.6 } Te}}}}. The electric AC conductivity has been increased dramatically under the laser light with the wave lengths of {{{{ lambda =6328,5145 and4880 }}}}$\AA$ ,respectively. After the light was darkened, the conductivity was reduced to the original level after about 2000 seconds at 50K, being above the spin glass transition temperature. This phenomenon is the typical persistent photoconductivity; PPC which was similarly found in {{{{ { Zn}_{ 1-x} { Mn}_{x} Te}}}}.

  • PDF

Three Dimensional Thermal Cycle Analysis of Mold in Repeated Forming Process of TV Glass (TV 유리의 반복 성형공정에서 3차원 금형 열사이클 해석)

  • Hwang, Jung-Hea;Choi, Joo-Ho;Kim, Jun-Bum
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.192-198
    • /
    • 2000
  • Three dimensional thermal cycle analysis of the plunger is carried out in repeated forming process of the TV glass, which is continued work of two dimensional analysis where an efficient method has been proposed. The plunger undergoes temperature fluctuation during a cycle due to the repeated contact and separation from the glass, which attains a cyclic steady state having same temperature history at every cycle. Straightforward analysis of this problem brings about more than 90 cycles to get reasonable solution. An exponential function fitting method is proposed, which finds exponential function to best approximate temperature values of 3 consecutive cycles, and new cycle is restarted with the fitted value at infinite time. Number of cases are analyzed using the proposed method and compared to the result of straightforward repetition, from which one finds that the method always reaches nearly convergent solution within $9{\sim}12$ cycles, but turns around afterwards without further convergence. Two step use is found most efficient, in which the exponential fitting is carried out fer the first 12 cycles, followed by simple repetition, which shows fast convergence expending only 6 additional cycles to get the accuracy within 2 error. This reduces the computation cycle remarkably from 90 to 18, which is 80% reduction. From the parametric studies, one reveals that the overall thermal behavior of the plunger in terms of cooling parameters and time is similar to that of 2 dimensional analysis.

  • PDF

Simulation for nanoimprint lithography process using temperature controlled nonequilibrium molecular dynamics (온도 제어 비평형 분자동역학 방법을 이용한 나노임프린트 리소그라피 공정의 전산모사)

  • Kwon, Sung-Jin;Lee, Young-Min;Im, Se-Young
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.332-336
    • /
    • 2007
  • Temperature is an essential process variable in nanoimprint lithography(NIL) where the temperature varies between room temperature and above the glass transition temperature. To simulate NIL process, we employ both the Nose-Poincare method for temperature controlled molecular dynamics(MD) and force field for polymer material i.e. polymethyl methacrylate(PMMA), which is most widely selected as NIL resist. Nose-Poincare method, which convinces the conservation of Hamiltonian structure and time-reversal symmetry, overcomes the drawbacks inherent in the conventional methods such as Nose thermostat and Nose-Hoover thermostat. Thus, this method exhibits enhanced numerical stability even when the temperature fluctuation is large. To describe PMMA, we adopt the force field which account for bond stretch, bending, torsion, inversion, partial charge, and van der Waals energy.

  • PDF

Monte Carlo Simulation of the Molecular Properties of Poly(vinyl chloride) and Poly(vinyl alcohol) Melts

  • Moon, Sung-Doo;Kang, Young-Soo;Lee, Dong-J.
    • Macromolecular Research
    • /
    • v.15 no.6
    • /
    • pp.491-497
    • /
    • 2007
  • NPT Monte Carlo simulations were performed to calculate the molecular properties of syndiotactic poly(vinyl chloride) (PVC) and syndiotactic poly(vinyl alcohol) (PVA) melts using the configurational bias Monte Carlo move, concerted rotation, reptation, and volume fluctuation. The density, mean square backbone end-to-end distance, mean square radius of gyration, fractional free-volume distribution, distribution of torsional angles, small molecule solubility constant, and radial distribution function of PVC at 0.1 MPa and above the glass transition temperature were calculated/measured, and those of PVA were calculated. The calculated results were compared with the corresponding experimental data and discussed. The calculated densities of PVC and PVA were smaller than the experimental values, probably due to the very low molecular weight of the model polymer used in the simulation. The fractional free-volume distribution and radial distribution function for PVC and PVA were nearly independent of temperature.

Component dynamics in miscible polymer blends: A review of recent findings

  • Watanabe, Hiroshi;Urakawa, Osamu
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.4
    • /
    • pp.235-244
    • /
    • 2009
  • Miscible polymer blends still have heterogeneity in their component chain concentration in the segmental length scale because of the chain connectivity (that results in the self-concentration of the segments of respective chains) as well as the dynamic fluctuation over various length scales. As a result, the blend components feel different dynamic environments to exhibit different temperature dependence in their segmental relaxation rates. This type of dynamic heterogeneity often results in a broad glass transition (sometimes seen as two separate transitions), a broad distribution of the local (segmental) relaxation modes, and the thermo-rheological complexity of this distribution. Furthermore, the dynamic heterogeneity also affects the global dynamics in the miscible blends if the component chains therein have a large dynamic asymmetry. Thus, the superficially simple miscible blends exhibit interesting dynamic behavior. This article gives a brief summary of the features of the segmental and global dynamics in those blends.

The Substitution Effect of Boron on Reentrant Behavior of Rapidly Solidified FeMnZr Alloys

  • Moon, Y.M;Kim, K.S;Yu, S.C;Srinivas, V
    • Journal of Magnetics
    • /
    • v.9 no.4
    • /
    • pp.113-115
    • /
    • 2004
  • The magnetization properties have been measured for amorphous $Fe_{82}Mn_{8-x}B_xZr_{10}$ (x = 0-8) alloys. The temperature dependence of magnetization for these alloys shows the existence of antiferromagnetic couplings between Fe atoms in low fields at low temperatures. The magnetic parameters, obtained from the magnetization behavior are consistent with the presence of mixed magnetic state. The Curie temperature and magnetic moment increased with an increase of the concentration of B and spin glass like transition observed at low temperature decreases and finally vanishes at x = 8 at %. Our result suggests that the substitution of B for Mn seems to cause an increase of magnetic order.

Molecular Dynamics Simulation for the Mechanical Properties of CNT/Polymer Nanocomposites (분자동역학 시뮬레이션을 이용한 나노튜브/고분자 나노복합재의 물성 해석)

  • Yang, Seung-Hwa;Cho, Maeg-Hyo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.2 s.257
    • /
    • pp.237-244
    • /
    • 2007
  • In order to obtain mechanical properties of CNT/Polymer nano-composites, molecular dynamics simulation is performed. Overall system was modeled as a flexible unit cell in which carbon nanotubes are embedded into a polyethylene matrix for N $\sigma$ T ensemble simulation. COMPASS force field was chosen to describe inter and intra molecular potential and bulk effect was achieved via periodic boundary conditions. In CNT-polymer interface, only Lennard-Jones non-bond potential was considered. Using Parrinello-Rahman fluctuation method, mechanical properties of orthotropic nano-composites under various temperatures were successfully obtained. Also, we investigated thermal behavior of the short CNT reinforced nanocomposites system with predicting glass transition temperature.

The analysis on long-term durability and output power characteristics of PV modules by variation on local thermal property (태양전지모듈의 국부적 열특성 변화에 따른 장기적 내구성 및 출력특성 분석)

  • Kang, Gi-Hwan;Kim, Kyung-Soo;Park, Chi-Hong;Yu, Gwon-Jong;Ahn, Hyung-Keun;Han, Deuk-Young
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.214-215
    • /
    • 2007
  • Int this paper, we studied the analysis on long-term durability and output power characteristics of PV modules by variation on local thermal property. Using 5 modules(80W), we measured the maximum output power change during the test period. And the optical transmittance of glass was compared with PV module's maximum power fluctuation. The external environment change effected contamination on the entire or local surface of module. This caused the local temperature variation of each solar cell on PV module. The specific analysis is shown in the following paper.

  • PDF

Fiber-optic Mach-Zehnder Interferometer for the Detection of Small AC Magnetic Field (미소 교류 자기장 측정을 위한 Mach-Zehnder 광섬유 간섭계 자기센서 특성분석)

  • 김대연;안준태;공홍진;김병윤
    • Korean Journal of Optics and Photonics
    • /
    • v.2 no.3
    • /
    • pp.139-148
    • /
    • 1991
  • A fiber-optic magnetic sensor system for the detection of small ac magnetic field(200Hz-2 kHz) was constructed. Magnetic field sensing part was fabricated by bonding a section of optical fiber to amorphous metallic glass(2605SC) having large magnetostriction effect. And with the directional coupler, all fiber type Mach-Zehnder interferometer was constructed to measure the variation of the external magnetic field by translating it into the optical phase shift in the interferometer. The signal fading problem of the interferometer, which is due to random phase drifts originated from the environment, i.e., temperature fluctuation, vibrations, etc., was elliminated by feedback phase compensation. This allows the sensitivity to be maintained at the maximum by keeping the interferometer in quadrature phase condition. The frequency response of metallic glass was found to be nearly flat in the range of 90 Hz-2 kHz and dc bias field for the maximum ac response was 3.5 Oe. The interferometer output showed good linearity over the range $\pm$0.5 Oe. For 1 kHz ac magnetic field the scale factor S and the minimum detectable magnetic field were measured to be 8.0 rad/Oe and $3X10^{-6} Oe/\sqrt{Hz}$at 1 Hz detection bandwidth respectively.

  • PDF

Fabrication of a Micro-thermoelectric Probe (마이크로 프로브 기반 열전 센서 제작 기술)

  • Chang, Won-Seok;Choi, Tae-Youl
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.11
    • /
    • pp.1133-1137
    • /
    • 2011
  • A novel technique for the fabrication of a glass micropipette-based thermal sensor was developed utilizing inexpensive thermocouple materials. Thermal fluctuation with a resolution of ${\pm}0.002$ K was measured using the fabricated thermal probe. The sensors comprise unleaded low-melting point solder alloy (Sn) as a core metal inside a borosilicate glass pipette coated with a thin film of Ni, creating a thermocouple junction at the tip. The sensor was calibrated using a thermally insulated calibration chamber, the temperature of which can be controlled with a precision of ${\pm}0.1$ K and the thermoelectric power (Seebeck coefficient) of the sensor was recorded from 8.46 to $8.86{\mu}V$/K. The sensor we have produced is both cost-effective and reliable for thermal conductivity measurements of micro-electromechanical systems (MEMS) and biological temperature sensing at the micron level.