• 제목/요약/키워드: Glass fibers

검색결과 360건 처리시간 0.026초

유리섬유 강화 플라스틱의 역학적 거동 구현을 위한 Digimat와의 연성해석 연구 (Coupled Analysis with Digimat for Realizing the Mechanical Behavior of Glass Fiber Reinforced Plastics)

  • 김영만;김용환
    • 한국전산구조공학회논문집
    • /
    • 제32권6호
    • /
    • pp.349-357
    • /
    • 2019
  • 유한요소법(finite element method)은 다양한 분야에서 재료의 역학적 거동을 더욱더 현실적으로 해석하고 예측하는 방법으로 다양한 분야의 제품 개발에 적용되고 있다. 하지만 섬유배향과 변형률 속도가 역학적 특성에 영향을 미치는 유리섬유 강화 플라스틱 복합재료에 관한 수치해석을 이용한 접근 방법은 현재까지 다소 어려움이 있다. 본 연구의 목적은 고분자, 고무, 금속 등과 같은 다양한 복합재료를 위한 선형, 비선형 다중스케일 재료 모델링 프로그램인 Digimat의 수치해석 재료 모델을 활용하여 유리섬유 강화 플라스틱 복합재료의 역학적 특성을 정의하고 검증하는 것에 있다. 또한 이를 통해 좀더 현실적으로 고분자 복합재료의 거동을 예측하고자 한다. 이를 위해 다양한 고분자 중 30wt%의 단섬유 질량 비율을 갖는 폴리부틸렌 텔레프탈레이트(polybutylene terephthalate, PBT)의 섬유배향과 변형률 속도에 따른 인장 특성을 참고문헌을 통해 조사하였다. 또한 Moldflow 프로그램을 사용한 사출해석을 통해 유리섬유 배향 정보를 계산하였으며 이를 매핑(mapping) 과정을 통해 유한요소 인장 시편 모델에 전달하였다. 대표적인 유한요소 상용 프로그램 중 하나인 LS-DYNA는 유리섬유 배향과 변형률 속도에 따른 복합재료의 인장 특성을 연구하기 위해 Digimat과의 연성해석(coupled analysis)에 활용되었다. 그리고 유리섬유 강화 플라스틱 복합재료를 해석하기 위한 LS-DYNA의 다양한 비등방성(anisotropic) 재료 모델들의 장단점을 서로 비교하고 평가하였다.

Infrared Scanning Near-Field Optical Microscopy (IR-SNOM) Below the Diffraction Limit

  • Sanghera, J.S.;Aggarwal, I.D.;Cricenti, A.;Generossi, R.;Luce, M.;Perfetti, P.;Margoritondo, G.;Tolk, N.;Piston, D.
    • 세라미스트
    • /
    • 제10권3호
    • /
    • pp.55-66
    • /
    • 2007
  • Infrared Scanning Near-field Optical Microscopy (IR-SNOM) is an extremely powerful analytical instrument since it combines IR spectroscopy's high chemical specificity with SNOM's high spatial resolution. In order to do this in the infrared, specialty chalcogenide glass fibers were fabricated and their ends tapered to generate SNOM probes. The fiber tips were installed in a modified near field microscope and both inorganic and biological samples illuminated with the tunable output from a free-electron laser located at Vanderbilt University. Both topographical and IR spectral images were simultaneously recorded with a resolution of ${\sim}50\;nm$ and ${\sim}100\;nm$, respectively. Unique spectroscopic features were identified in all samples, with spectral images exhibiting resolutions of up to ${\lambda}/60$, or at least 30 times better than the diffraction limited lens-based microscopes. We believe that IR-SNOM can provide a very powerful insight into some of the most important bio-medical research topics.

  • PDF

고분자복합재료 보강 콘크리트 압축부재의 응력-변형률 관계 해석 (Analysis of the Stress-Strain Relationship of Concrete Compression Members Strengthened by Composite Materials)

  • 이상호;장일영;김효진;나혁층
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.717-720
    • /
    • 1999
  • Recently, the fiber composite materials such as carbon fiber, glass fiber, or aramid, have been frequently used in strengthening reinforced concrete structures. The fiber composite materials typically have orthotropic characteristic and the strength changes significantly acording to the direction of fibers and the method of the lamination. In this study, an algorithm to estimate the stress-strain relationship of the composite materials which have different fiber directions and symmetric or non-symmetric lamination has been developed by using Tsai-Hill and Tsai-Wu failure criteria and progressive laminate failure theory. This algorithm has been implemented to several stress-strain models for the laterally confined concrete compression members such as Mander, Hosotani, and Nakatsuka. The evaluated stress-strain behaviors by the different models are discussed.

  • PDF

광섬유 진동센서를 이용한 탄소섬유강화 복합재료의 손상 및 파손검출 (Damage and Failure Detection of CFRP Using Optical Fiber Vibration Sensor)

  • 양유창;한경섭
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 춘계학술발표대회 논문집
    • /
    • pp.254-257
    • /
    • 2001
  • An intensity-based optical fiber vibration sensor is applied to detect and evaluate damages and fiber failure of composites. The optical fiber vibration sensor is constructed by placing two cleaved fiber end, one of which is cantilevered in a hollow glass tube. The movement of the cantilevered section lags behind the rest of the sensor in response to an applied vibration and the amount of light coupled between the two fibers is thereby modulated. Vibration characteristics of the optical fiber vibration sensor are investigated. Surface mounted optical fiber vibration sensor is used in tensile and indentation test. Experimental results show that the optical fiber sensor can detect damages and fiber failure of composites correctly.

  • PDF

선박용 폐 FRP 수지의 재활용 공정 개발 (Development of A Recycling Process for Waste FRP from Boats)

  • 강세란;김영우;황덕기;김시영;이민규;주창식
    • 한국환경과학회지
    • /
    • 제12권6호
    • /
    • pp.635-641
    • /
    • 2003
  • A recycling process for the waste FRP from boats was developed. The recycling process is composed of decomposition of waste FRP with propylene glycol and synthesis of recycled unsaturated polyester resin from the decomposed liquid material. Prior to the decomposition, waste FRP was cut into 2cm x 5cm segments and mechanical impact was applied by press roller to give gaps between cumulated laminates. Propylene glycol effectively decomposed the waste FRP segments and glass fibers were easily separated from decomposed liquid material. Recycled unsaturated polyester resin could be made from the decomposed liquid material by reaction with maleic anhydride and phthalic anhydride.

Poly(trimethylene terephthalate) 섬유의 물성과 염색성 (The Physical Properties and Dyeability of Poly(trimethylene terephthalate) Fibers)

  • 윤석한;김태경;임용진;조규민
    • 한국염색가공학회지
    • /
    • 제13권3호
    • /
    • pp.197-202
    • /
    • 2001
  • The mechanical properties and dyeability of Poly(trimethylene terephthalate)(PTT) were investigated and compared to PET. Glass transition temperature of PTT was lower than that of PET, because amorphous region of PTT is mote flexible. n has smaller molecular and specific stress and larger strain than those of PET, due to the difference of molecular structure. Dyeing transition temperature of PTT was lower by $20^\circ{C}$ than that of PET. Because PTT has flexible chain and zigzag structure, dyeing Fate of PTT is faster than PET and dyeing of PTT is begun at lower temperature. As the hydrophobicity of disperse dyes increased, the ratio of equilibrium dye uptake on PTT to that on PET was increased.

  • PDF

Improvement of Oxidation Resistance by Coating on C/BN Composites

  • Kim, Dong-Pyo;Park, Hee-Dong;Lee, Jae-Do
    • The Korean Journal of Ceramics
    • /
    • 제1권3호
    • /
    • pp.155-159
    • /
    • 1995
  • Borosilicate, $B_2O_3$ and BN derived from liquid precursors have been tested as shielding materials for the long period of oxidation resistance of C/BN composites at $650^{\circ}C$. Borosilicate coating displayed excellent oxidation resistance and low moisture absorbance, while $B_2O_3$ and BN were less effective in elevating the oxidation resistance. The enhancement of the oxidation resistance was explained as self-healing effect by viscous flow of the borosilicate glass over Tg, resulting in the reduction of the exposed carbon fibers in a BN matrix.

  • PDF

Improved Membranes for the Extraction of Heavy Metals

  • Xu, Jianying;Shen, Wei;Paimin, Rohani;Wang, Xungai
    • Fibers and Polymers
    • /
    • 제5권1호
    • /
    • pp.68-74
    • /
    • 2004
  • This work presents a series of experimental tests on new practical approaches in membrane design to improve extraction capacity and rate. We chose an extraction system involving Aliquat 336 as the extractant and Cd(II) as the metal ion to be extracted to demonstrate these new approaches. The core element in the new membrane assembly was the extractant loaded sintered glass filter. This membrane assembly provided a large interface area between the extractant and the aqueous solution containing metal ions. By recycling the aqueous solution through the membrane assembly, the extraction rate was significantly improved. The membrane assembly also offered good extraction capacity.

FRP Re-bar 보강 직사각형 단면 콘크리트 보의 구조적 거동 및 설계방법에 관한연구 (A Study on the Structural Behavior and Design Criteria of FRP Re-bar Reinforced Rectangular Concrete Beam)

  • 주형중;옥동민;박주경;윤순종
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 추계학술발표대회 논문집
    • /
    • pp.276-279
    • /
    • 2005
  • FRP Composite materials are widely applicable in the construction industries as a load-bearing structural element or a reinforcing and/or repairing materials for the concrete. In this paper, we presented the flexural behavior of FRP Re-bar and steel reinforced concrete beams and only FRP re-bars reinforced concrete beams. FRP Re-bar manufactured by different fibers but the same vinylester resin. Also, surface of FRP Re-bars is coated garnet and glass fiber by epoxy to increase the adhesive to concrete. Experimental investigation pertaining to the load-deflection and load-strain characteristics of two classfied specimens is presented and the theoretical prediction is also conducted. In the investigation, the effects of FRP Re-bar reinforcement are estimated. The experimental results arc compared with theoretical predictions. Good agreements arc observed.

  • PDF

Thermal conductivity of PLA-bamboo fiber composites

  • Takagi, Hitoshi;Kako, Shuhei;Kusano, Koji;Ousaka, Akiharu
    • Advanced Composite Materials
    • /
    • 제16권4호
    • /
    • pp.377-384
    • /
    • 2007
  • 'Green' composites were fabricated from poly lactic acid (PLA) and bamboo fibers by using a conventional hot pressing method. The insulating properties of the PLA-bamboo fiber 'green' composites were evaluated by determination of the thermal conductivity, which was measured using a hot-wire method. The thermal conductivity values were compared with theoretical estimations. It was demonstrated that thermal conductivity of PLA-bamboo fiber 'green' composites is smaller than that of conventional composites, such as glass fiber reinforced plastics (GFRPs) and carbon fiber reinforced plastics (CFRPs). The thermal conductivity of PLA-bamboo fiber 'green' composites was significantly influenced by their density, and was in fair agreement with theoretical predictions based on Russell's model. The PLA-bamboo fiber composites have low thermal conductivity comparable with that of woods.