• Title/Summary/Keyword: Glass fiber reinforced plastics

Search Result 108, Processing Time 0.025 seconds

A study on a transcription of pattern of the glass fiber reinforced laptom computer cover surface (유리섬유 강화 플라스틱 노트북 커버의 전사성에 관한 연구)

  • Kwak, Yong-Soo;Han, Seong-Ryeol
    • Design & Manufacturing
    • /
    • v.10 no.3
    • /
    • pp.39-45
    • /
    • 2016
  • The purpose of this study is to build effective cooling circuit design in injection mold to improve glass fiber reinforced laptop computer cover plastics' transcription and gloss. Moldflow Insight and Ansys CFD CAE program used to verify efficiency and the experiment mold is precision machined and brazing soldered to make three-dimension cooling channel. The temperature of mold in injection test are fixed to $80^{\circ}C$ and $160^{\circ}C$. The result of this experiment is the improved surface quality of plastics with 85% improvement of transcription in high temperature mold.

Characteristics of tool wear in cutting glass fiber reinforced plastics : the effect of physical properties of tool materials (유리섬유 강화 플라스틱(GERP) 절삭시의 공구마멸 특성)

  • 이원평;강명순
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.10 no.1
    • /
    • pp.33-41
    • /
    • 1988
  • A turning (facing) test on Glass Fiber Reinforced Plastics was performed with several tool materials, e.g., cemented carbides, cermet and ceramic, and the wear patterns and wear rate were analyzed to clarify the relation between physical(mechanical) properties and flank wear of cutting tool. The main results are obtained as follows: (1) When cutting speed is increased, the flank wear in every tool material grows the abnormal wear in the shape of triangle at a certain speed, i.e., a critical speed. (2) When cutting speed is increased, the wear rate in experimental tool material starts to increase remarkably at a critical speed. (3) The thermal conductivity among the properties of the tool material and the thermal crack coefficient of it are almost in proportion to the critical speed. (4) The order of performance in tool materials for cutting GFRP is K 10, M10, P20, TiC, CB.

  • PDF

The Strength Characteristics of Polymer Composites Injection Parts for Lightness and Safety (경량화와 안전을 위한 폴리머 복합재료 사출품의 강도특성)

  • Yun, Yeo-Kwon;Kim, Jin-Ho
    • Journal of the Korea Safety Management & Science
    • /
    • v.13 no.4
    • /
    • pp.101-108
    • /
    • 2011
  • In this paper deals with strength of glass fiber reinforced plastics produced by shouting machine was investigated by universal testing instrument. We can obtain following results by performing the strength evaluation of polymer composite material according as varied environment temperature. The effect of environmental temperature on Strength properties was more sensitive in the weld specimen than parent. When changed environmental temperature, variation of strength in the parent was much bigger than it of weld specimen, that is, matrix in the parent, orientation in the specimen ware more sensitive to environmental strength. Tensile strength of polycarbonate matrix was similar regardless of mold temperature.

Analysis of EMF Mitigation Characteristic for Transmission Tower Using Compact Insulation Arm (Compact 절연암 송전 철탑의 전자계 저감특성 분석)

  • Song, Hong-Jun;Lee, Won-Kyo;Lee, Sang-Yun;Choi, In-Hyeok;Lee, Dong-Il;Byeon, Ki-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.2
    • /
    • pp.349-355
    • /
    • 2009
  • As electrical power demand is gradually increasing, the construction of power transmission facility is unavoidable. However difficulties which resulted from increasing of complaints and NYMBY make power transmission tower to be more environmentally friendly. As an alternative proposal, a new method which is changing conventional iron arm for insulation arm which is made of FRP(Fiber Glass Reinforced Plastics) is in progress. In this paper, we discussed environmentally friendly characteristic of domestic 154 kV testing transmission tower whose insulation arms have same mechanical and excellent electrical properties compare to conventional heavy iron arm.

A Study on the Cutting Characteristics of the Glass Fiber Reinforced Plastics by Drill Tools (드릴에 의한 유리섬유강화플라스틱의 절삭특성에 관한 연구)

  • 박종남;조규재
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.3
    • /
    • pp.15-21
    • /
    • 2004
  • Composite materials are widely used to make all kinds of machine parts, internal and structural materials of cars, aerospace industries, building structures, ship materials, sporting goods and others. It is worth the while to use composite materials as various substitutions when compared with others. But the use is limited in the field of the mechanical processing because of its difficulties in processing. Thus, it is proved that the surface is rough in and out of the hole processing the GFRP with HSS drill in the vertical machining center.

Analysis of Delamination Behavior on the Stacking Sequence of Prosthetic Foot Keel in Glass fiber Reinforced Laminates (인공발(Prosthetic Foot) 스프링용 유리섬유강화 적층재의 적층배향에 따른 층간분리거동 해석)

  • Song, Sam-Hong;Kim, Cheol-Woong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.4
    • /
    • pp.623-631
    • /
    • 2003
  • It is considered that the application of advanced composite materials to the prostheses for the disables is important to improve their bio-mechanical performance. Particularly, energy storing foot prosthesis is mostly important to restore gait ability of the disables with low-extremity amputation since it could provide propulsion at terminal stance enhancing the disables ability to walk long distance even run and jump. Therefore, the energy storing spring of Prosthetic foot keel under cyclic bending moment use mainly of high strength glass fiber reinforced plastic. The main objective of this study was to evaluate the stacking sequence effect using the delamination growth rate(dA$_{D}$/dN) of energy storing spring in glass fiber reinforced plastic under cyclic bending moment. The test results indicated that the shape of delamination zone depends on stacking sequence in GFRP laminates. Delamination area(A$_{D}$) turns out that variable types with the contour increased non-linearly toward the damage zones.nes.

Development of high speed coupling for 2MW class wind turbine (2MW급 대형 풍력발전기용 고속커플링 개발)

  • Son, Seung Deok;Lee, Hyoung Woo;Han, Jeong Young;Kim, Yong Won;Kang, Jong Hun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.3
    • /
    • pp.262-268
    • /
    • 2014
  • This research introduces the structural design and the validation results of the flexible high speed coupling for 2MW class wind turbine which transmit and cut off torque between gear box and generator. The high speed coupling requires electrical insulation to prevent electrical surface damages on gear box. Therefore glass fiber reinforced plastics is applied to absorb the vibration and deformation of power train and to transmit required torque. Finite element analysis was performed to optimize the thickness and accumulation number of glass fiber reinforced plastics. Torque limiter which cut off the abnormal torque is designed in frictional disc type. The design of the coupling was validated with the performance test of prototype.

Mechanical Characteristics of GF/recycled PET Thermoplastic Composites with Chopped Fiber According to Cross Section (단면형상에 따른 GF/rPET 열가소성 복합재료의 물리적 특성 연구)

  • Kim, Ji-hye;Lee, Eun-soo;Kim, Myung-soon;Sim, Jee-hyun
    • Textile Coloration and Finishing
    • /
    • v.29 no.4
    • /
    • pp.239-246
    • /
    • 2017
  • Recently fiber-reinforced thermoplastic composites have attracted great interest from industry and study because they offer unique properties such as high strength, modulus, impact resistance, corrosion resistance, and damping reduction which are difficult to obtain in single-component materials. The demand for plastics is steadily increasing not only in household goods, packaging materials, but also in high-performance engineering plastic and recycling. As a result, the technology of recycling plastic is also attracting attention. In particular, many paper have studied recycling systems based on recycled thermoplastics. In this paper, properties of Glass Fiber Reinforced Thermoplastic(GFRTP) materials were evaluated using recycled PET for injection molding bicycle frame. The effect on thermal and mechanical properties of recycled PET reinforced glass chop fiber according to fiber cross section and fiber content ratio were studied. And it was compared void volume and torque energy by glass fiber cross section, which is round section and flat section. Mechanical characteristics of resulting in GF/rPET has been increased by increasing fiber contents, than above a certain level did not longer increased. And mechanical properties of flat glass fiber reinforced rPET with low void volume were most excellent.

A Study on the Warpage of Glass Fiber Reinforced Plastics for Part Design and Operation Condition: Part 2. Crystalline Plastics (유리섬유로 보강된 수지에서 제품설계 및 성형조건에 따른 휨의 연구: Part 2. 결정성 수지)

  • Lee, Min;Kim, Hyeok;Lyu, Min-Young
    • Polymer(Korea)
    • /
    • v.36 no.6
    • /
    • pp.677-684
    • /
    • 2012
  • Injection molding process is a popular polymer processing involving plasticizing and enforcing the material flow into the mold. A polymer material shrinks according to temperature variations during the shaping process, and subsequently molding shrinkage developed. Developed deflections or warpages after molding process in part are caused by residual stress relaxation contained in the part. Adding inorganic materials or fibers such as glass and carbon to control shrinkage and enhance warpage resistance are common. In this study, warpages according to part design have been investigated through experiment. Warpages for molding conditions and mold designs such as gate locations were measured. Warpages along flow direction and perpendicular to the flow direction were also measured. Warpages near gate and far from gate were compared. Glass fiber reinforced crystalline polymers, PP and PA66 have been used in this experiment. Glass fiber reinforced crystalline polymers showed large warpage compared with glass reinforced amorphous polymers. Warpages in crystalline polymers were less influenced by molding conditions compared with amorphous polymers, however warpages of crystalline polymers significantly depend on part design.

Color stability of laboratory glass-fiber-reinforced plastics for esthetic orthodontic wires

  • Inami, Toshihiro;Tanimoto, Yasuhiro;Minami, Naomi;Yamaguchi, Masaru;Kasai, Kazutaka
    • The korean journal of orthodontics
    • /
    • v.45 no.3
    • /
    • pp.130-135
    • /
    • 2015
  • Objective: In our previous study, glass-fiber-reinforced plastics (GFRPs) made from polycarbonate and glass fibers were prepared for esthetic orthodontic wires using pultrusion. These laboratory GFRP wires are more transparent than the commercially available nickel-titanium wire; however, an investigation of the color stability of GFRP during orthodontic treatment is needed. Accordingly, in the present study, the color stability of GFRP was assessed using colorimetry. Methods: Preparation of GFRP esthetic round wires (diameter: 0.45 mm [0.018 inch]) using pultrusion was described previously. Here, to investigate how the diameter of fiber reinforcement affects color stability, GFRPs were prepared by incorporating either $13-{\mu}m$ (GFRP-13) or $7-{\mu}m$ glass (GFRP-7) fibers. The color changes of GFRPs after 24 h, and following 1, 2, and 4 weeks of coffee immersion at $37^{\circ}C$, were measured by colorimetry. We evaluated the color stability of GFRPs by two evaluating units: the color difference (${\Delta}E^*$) and National Bureau of Standards (NBS). Results: After immersion, both GFRPs showed almost no visible color change. According to the colorimetry measurements, the ${\Delta}E^*$ values of GFRP-13 and GFRP-7 were 0.73-1.16, and 0.62-1.10, respectively. In accordance with NBS units, both GFRPs showed "slight" color changes. As a result, there were no significant differences in the ${\Delta}E^*$ values or NBS units for GFRP-13 or GFRP-7. Moreover, for both GFRPs, no significant differences were observed in any of the immersion periods. Conclusions: Our findings suggest that the GFRPs will maintain high color stability during orthodontic treatment, and are an attractive prospect as esthetic orthodontic wires.