• 제목/요약/키워드: Glass fiber contents

검색결과 64건 처리시간 0.026초

산업부산물을 활용한 섬유보강 시멘트 복합체의 가학적 특성에 관한 실험적 연구(I ) (An Experimental study on the Mechanical Properies of Fiber Reinforced Cement Composites Utilizing y-Products(II))

  • 박승범;윤의식;조청위
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1993년도 봄 학술발표회 논문집
    • /
    • pp.93-98
    • /
    • 1993
  • In order to discuss the mechanical properties of fiber reinforced composites with fly ash, lime, gypsum and polymer emulsion-Stylene Butadiene Rubber Latex (SBR) , experimental studies on FRC were carried out. The kinds of fiber used in FRC are PAN-dervied and Pitch-derived carbon fiver, alkali-resistance glass fiber. As a test results, the flexural strength and tougthness of fiber reinforced fly ash. lime.gypsum cement composites are remarkably increased by fiber contents ,but compressive strength of the composites are influenced by kinds of fiber more than by fiber contents. Also, addition of a polymer emulsion (SBR) to the composites decreased the bulk specific gravity, but compressive and flexural strengths, toughness of the composites are not influenced by it, are considerably improved by increasing fiber contents.

  • PDF

Improving the Mechanical Properties of Salt Core through Reinforcing Fibers

  • Ahrom Ryu;Soyeon Yoo;Min-Seok Jeon;Dongkyun Kim;Kiwon Hong;Sahn Nahm;Ji-Won Choi
    • 센서학회지
    • /
    • 제32권3호
    • /
    • pp.159-163
    • /
    • 2023
  • Salt cores have attracted considerable attention for their application to the casting process of electric vehicle parts as a solution to ecological issues. However, the salt core still has low mechanical strength for use in high-pressure die casting. In this study, we investigated the improvements in the bending strength of KCl-based salt cores resulting from the use of reinforcing materials. KCl and Na2CO3 powders were used as matrix materials, and glass fiber and carbon fiber were used as reinforcing materials. The effects of carbon fiber and glass fiber contents on the bending strength properties were investigated. Here, we obtained a new fiber-reinforced salt core composition with improved bending strength for high-pressure die casting by adding a relatively small amount of glass fiber (0.3 wt%). The reinforced salt core indicates the improved properties, including a bending strength of 49.3 Mpa, linear shrinkage of 1.5%, water solubility rate of 16.25 g/min·m2 in distilled water, and hygroscopic rate of 0.058%.

코팅공구에 의한 섬유강화 복합재료의 선삭가공 특성 (Turning Characteristics of Fiber-Reinforced Plastics by Coated Tools)

  • 정용운;김주현
    • 한국공작기계학회논문집
    • /
    • 제10권3호
    • /
    • pp.38-42
    • /
    • 2001
  • In the machining of glass fiber reinforced plastics(GFRP), turning has been often used. But the most of past studies have been interested in the effect of fiber orientation on tool wear. In this study, the effects of fiber contents and cutting speeds on tool wear, cutting force and surface roughness are investigated experimentally. By proper selection of cutting tool, the variables are cutting speed, fiber contents and cutting length with fixed feed rate and depth of cut. The fiber contents have major effects on coated tool wear which observed as abrasive wear type.

  • PDF

농도법에 의한 GFRP 복합재료의 섬유배향각 분포측정 (Measurement of Fiber Orientation-Angle Distribution of Glass Fiber Reinforced Polymeric Composite Materials by Intensity Method)

  • 김혁;안종윤;이동기;한길영;김이곤
    • 한국정밀공학회지
    • /
    • 제13권6호
    • /
    • pp.34-44
    • /
    • 1996
  • In order to examine the accuracy of the intensity method, the fiber orientation-angle distribution of fiber-reinforced polymeric composites is measured using image processing. The fiber orientation function is calculated from the fiber orientation measured by the soft X-ray photograph. Theoretical and experimental results of fiber orientation function are compared for the composites with different fiber contents and fiber orientations. The intensity method is used for the experimental investigation and the measured fiber orientation function is compared to the calculated one. The relations between the measured and the simulated fiber orientation functions $J{\small{M}}$ and $J{\small{S}}$ respectively are identified. For the fiber length of 1.000mm and 2.000mm, it shows that $J{\small{M}}=0.83J{\small{M}}$. However. in general. the value of $J{\small{M}}$ decreases as the fiber length increases. For GFRP composites the relations between $J{\small{M}}$ and theoretical value J show that $J{\small{M}}$=0.73J for short fiber and $J{\small{M}}$=0.81J for long fiber.

  • PDF

국부열손상을 받은 복합재료의 강도특성 및 비파괴평가 (Strength Characteristics and Non-Destructive Evaluation of Composites with Heat Damage)

  • 남기우;김영운
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.173-178
    • /
    • 2002
  • Fourier transform has been one of the most common tools to study the frequency characteristics of signals. With the Fourier transform alone, it is difficult to tell whether signal's frequency contents evolve in time or not. Except for a few special cases, the frequency contents of most signals encountered in the real world change with time. Time-frequency methods are developed recently to overcome the drawbacks of Fourier transform, which can represent the information of signals in time and frequency at the same time. In this study, heat damage process of a carbon fiber reinforced plastic(CFRP) and glass fiber reinforced plastic(GFRP) under monotonic tensile loading was characterized by acoustic emission. Different kinds of specimens were used to determine the characteristics of Strength and AE signals. Time-frequency analysis methods were employed for the analysis of fracture mechanism in CFRP such as matrix cracking, debonding and fiber fracture.

  • PDF

보론함량에 따른 D-glass의 유전율 특성 (Preparation and Dielectric Behavior of D-Glass with Different Boron Contents)

  • 정보라;이지선;이미재;임태영;이영진;전대우;신동욱;김진호
    • 한국재료학회지
    • /
    • 제27권1호
    • /
    • pp.39-42
    • /
    • 2017
  • E-glass (electrical glass) fiber is the widely used as a reinforced composite material of PCBs (printed circuit boards). However, E-glass fiber is not stable because it has a dielectric constant of 6~7. On the other hand, D-glass (dielectric glass) fiber has a low dielectric constant of 3~4.5. Thus, it is adaptable for use as a reinforcing material of PCBs. In this study, we fabricated D-glass compositions with low dielectric constant, and measured the electrical and optical properties. In the glass composition, the boron content was changed from 9 to 31 wt%. To confirm the dependence of the dielectric constant on melting properties, D-glass with 22 wt% boron was melted at $1550^{\circ}C$ and $1650^{\circ}C$ for 2hrs. The glass melted at $1650^{\circ}C$ had a lower dielectric constant than the glass melted at $1550^{\circ}C$. Therefore, the D-glass with boron of 9~31 wt% was fabricated by melting at $1650^{\circ}C$ for 2hrs, and transparent clear glass was obtained. We identified the non-crystalline nature of the glass using an XRD (x-ray diffractometer) graph. The visible light transmittance values depending on the boron contents were measured and found to be 88.6 % ~ 82.5 %. Finally, the dielectric constant of the D-glass with 31 wt% boron was found to have decreased from 4.18 to 3.93.

일방향 섬유강화 플라스틱 복합재의 점도에 미치는 성형인자의 영향 (Effect of Molding Parameters on Viscosity of Unidirectional Fiber Reinforced Plastic Composites)

  • 조선형;안종윤;윤성운
    • 한국생산제조학회지
    • /
    • 제9권6호
    • /
    • pp.41-48
    • /
    • 2000
  • The Compression molding process is widely used in the automotive industry to produce parts that are large, thin, light-weight, strong and stiff. Compression molded parts are formed by squeezing a glass fiber reinforced polypropylene sheet, known a glass mat thermoplastic(GMT), between two heated cavity surfaces. In this study, the anisotropic viscosity of the Unidirectional Fiber-Reinforced Plastic Composites is measured using the parallel plastometer and the composites is treated as an incompressible Newtonian fluid. The effects of molding parameter and fiber contents ratio on longitudinal/transverse viscosity are also discussed.

  • PDF

유리섬유와 열전도성 첨가제가 함유된 PBT 수지의 기계적 물성거동에 미치는 열충격피로의 영향 (Thermal Shock Fatigue Influence on Mechanical Property Behavior of PBT Resin Embedded by Glass Fibers and Thermal Conductive Particles)

  • 김기수;최낙삼;박상대
    • Composites Research
    • /
    • 제27권3호
    • /
    • pp.83-89
    • /
    • 2014
  • 본 연구는 엔지니어링 플라스틱인 Polybutylene terephthalate(PBT)에 첨가물을 넣어 강도와 열전도성, 열충격내구성을 개선시키는 것을 목적으로 한다. 그에 따라 PBT에 유리섬유(Glass Fiber)와 Boron nitride(BN)을 복합적으로 첨가하여, 각각의 조성비에 따른 기계적 특성과 열전도 특성변화를 실험적으로 분석하였다. 시험 결과 BN의 함유량이 증가함에 따라 열전도도는 증가하였고, 기계적 강도는 작아졌다. 열충격싸이클을 가한 결과, 비충전 PBT는 파단 신장률이 작아졌으나 충전 PBT는 강도와 열전도율이 별다른 성질변화가 거의 없었다. BN의 첨가에 따라 PBT 복합재의 열전도도도는 크게 향상되었다.

유리섬유 강화 폴리올레핀케톤 복합재료의 제조 및 특성에 대한 연구 (Preparation and Properties of Glass Fiber-Reinforced Poly(olefin ketone) Composites)

  • 조해석;정재승;백승조;최원재;김진주;윤성균;이종찬
    • 공업화학
    • /
    • 제23권3호
    • /
    • pp.339-343
    • /
    • 2012
  • 우수한 기계적 강도를 가지고 있는 폴리올레핀케톤 고분자를 합성하고, 우레탄과 아미노실란으로 표면 처리 된 유리섬유를 도입하여 엔지니어링 플라스틱용 복합재료를 제조하였다. 유리섬유와 폴리올레핀케톤의 상용성을 확인하기위해 주사 전자 현미경으로 복합재료의 파단면 형상을 확인하였고, 함유된 유리섬유의 크기와 양, 그리고 바인더의 종류에 따른 복합재료의 기계적 물성을 관찰하였다. 적절한 표면처리를 한 유리섬유로 강화된 폴리올레핀케톤 복합재료는 좋은 계면 상용성을 보이며 향상된 기계적 강도를 가지고 엔지니어링 플라스틱 분야에서의 응용 가능성을 확인 할 수 있었다.

유리섬유/폴리프로필렌 복합원사의 유리섬유 함량 변화에 따른 열가소성 복합재료의 함침 및 기계적 특성 평가 (Evaluation of Impregnation and Mechanical Properties of Thermoplastic Composites with Different GF Content of GF/PP Commingled Fiber)

  • 장영진;김늘새롬;권동준;양성백;염정현
    • Composites Research
    • /
    • 제33권6호
    • /
    • pp.346-352
    • /
    • 2020
  • 열가소성 복합재료는 수송용 기기의 구조용 소재로써 적용 분야가 확대되고 있다. 따라서 본 연구에서는 유리섬유(GF) 함량 차이에 따른 연속섬유 강화 GF/폴리프로필렌(PP)의 기계적 물성 및 함침성에 대한 평가를 진행하였다. GF 함량이 다른 GF/PP 복합원사를 제조하고 이를 이용하여 연속가압공정법으로 연속섬유 강화 GF/PP 중간재를 제조하였다. GF 함량에 따른 연속섬유 강화 GF/PP 복합재료의 인장강도, 굴곡강도 및 충격강도를 평가하였다. 전계방사형 주사전자현미경을 이용하여 인장파괴 된 GF/PP의 형태를 분석하여 GF 함량에 따른 파괴거동을 확인하였고, 동적기계분석 및 층간전단강도 측정 결과를 바탕으로 GF 함량에 따른 함침성 차이를 확인하였다. 궁극적으로 GF/PP 50 wt.% 복합재료 조건에서 기계적 강도와 함침성이 가장 안정화됨을 확인하였다.