• Title/Summary/Keyword: Glass composites

Search Result 910, Processing Time 0.025 seconds

Trenchless Repairing-Reinforcing Process of Underground Pipes with Advanced Composite Materials (신소재 복합재료를 이용한 비굴착 지하매설관 보수-보강공법)

  • 진우석;권재욱;이대길;유애권
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.43-48
    • /
    • 2001
  • To overcome the disadvantages of conventional excavation technology, various trenchless (or excavation free, or no-dig) repair-reinforcement technologies have been developed and tried. But trenchless technologies so fat developed have some brawbacks such as high cost and inconvenience of operation. In this study, a repairing-reinforcing process for underground pipes with glass fiber fabric polymer composites using VARTM(Vacuum Assisted Resin Transfer Molding) has been developed. The developed process requires shorter operation time and lower cost with smaller and simpler operating equipments than those of the conventional trenchless technologies. For the reliable operation of the developed method, a simple method to apply pressure and vacuum to the reinforcement was devised and flexible mold technology was tried. Also, resin filling and cure status during RTM process were monitored with a commercial dielectrometry cure monitoring system, LACOMCURE. From the investigation, it has been found that the developed repairing-reinforcing technology with appropriate process variables and on-line cure monitoring has many advantages over conventional methods.

  • PDF

Analysis of the foaming behavior in pultrusion process of phenolic foam composites (발포 복합재료 Pultrusion 공정에서의 발포 거동 해석)

  • Yun, Myung-Seok;Jung, Jae-Won;Lee, Woo-Il
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.130-133
    • /
    • 2005
  • An experimental and theoretical study was carried out to estimate the foaming characteristics in the pultrusion process of phenolic foam composite. For the experimental study, a lab-scale pultrusion apparatus was constructed. Methylene chloride(CH2Cl2) was used as a physical blowing agent, glass fiber roving was used as reinforcement and the polymer used was a resol type phenolic resin. Pultruded products were observed to count bubble size by a SEM(Scanning Electron Microscopy). For the theoretical study, a model for bubble growth in a gradually hardening resin was considered and solved for a few foaming conditions.

  • PDF

A STUDY ON IMPACT CHARACTERISTICS OF THE STACKING SEQUENCES IN CFRP COMPOSITES SUBJECTED TO FALLING-WEIGHT IMPACT LOADING

  • Im, K.H.;Park, N.S.;Kim, Y.N.;Yang, I.Y.
    • International Journal of Automotive Technology
    • /
    • v.4 no.4
    • /
    • pp.203-211
    • /
    • 2003
  • This paper describes a method for a falling weight impact test to estimate the impact energy absorbing characteristics and impact strength of CFRP (Carbon-fiber reinforced plastics) laminate plates based on considerations of stress wave propagation theory, which were converted to measurements of load and displacement verses time. The delamination area of impacted specimens for the different ply orientations was measured with an ultrasonic C-scanner to determine the correlation between impact energy and delamination area. The energy absorbed by a quasi-isotropic specimen having four interfaces was higher than that of orthotropic laminates with two interfaces. The more interfaces, the greater the energy absorbed. The absorbed energy of a hybrid specimen embedding GFRP (Glass-fiber reinforced plastics) layer was higher than that of normal specimens. Also, a falling weight impact tester was built to evaluate the characteristics and impact strength of CFRPs.

The Stress-strain Relationship of Glass Fiber Reinforced Thermoplastic Composite (유리섬유 강화 열가소성 복합재료의 응력-변형률 관계)

  • 이중희
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.5
    • /
    • pp.206-214
    • /
    • 1996
  • Because of the wide variety of the composite materials, inherent variability in properties, and complex temperature and strain rate dependence, large strain behavior of these materials has not been well characterized. Large strain behavior under uniaxial tension is characterized over a range of temperatures and strain rates, and a modified simple linear viscoelastic model is fit to the observed data. Of particular importance is the strain rate and temperature dependence of these composites, and it is the primary focus of this study. The strain rate and temperature dependence is then used to predict limiting tensile strains, based on Marciniak imperfection theory. Excellent correlation was obtained between model and experiment and the results are summarized in maps of forming limit as a function of strain rate and temperature.

  • PDF

Properties of EMNC and EMNSC for Insulation New Material as Apply to High Voltage Heavy Electric Machine (고압중전기기용 절연신소재 EMNC와 EMNSC의 특성연구)

  • Park, Jae-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.10
    • /
    • pp.1454-1460
    • /
    • 2012
  • In order to develop an new electric insulation material for heavy electric equipments, epoxy/micro/nano composite (EMNC) was prepared by mixing micro-silica with nano layered silicate, where the nano layered silicate was synthesized by our electric field dispersion method, EMNSC was prepared by treating the EMNC with a silane coupling agent. Thermal properties such as glass transition temperature (Tg) and thermal expansion coefficient, and DMA characteristics were studied, and mechanicla properties such as tensile and flexural tests were performed. AC electrical insulation strength was also tested. All properties of EMNSC were modified by treating EMNC with silane coupling agent and it was confirmed that our new developed composites could be used in the heavy electric equipments.

Water Absorption and Charge Formation in PCB (PCB 절연체에서 전하 형성과 수분 흡수)

  • Lee, Jung-Soo;Hwang, Jong-Sun
    • Proceedings of the KIEE Conference
    • /
    • 2008.09a
    • /
    • pp.233-234
    • /
    • 2008
  • We observed internal space charge behavior for two types of epoxy composites under dc electric fields to investigate the influence of water at high temperature. In the case of glass/epoxy specimen, homocharge is observed at water-treated specimen, and spatial oscillations become clearer in the water-treated specimens. Electric field in the vicinity of the electrodes shows the injection of homocharge. In aramid/epoxy specimens, heterocharge is observed at water-treated specimens, i.e. negative charge accumulates near the anode, while positive charge accumulates near the cathode. Electric field is enhanced just before each electrode. In order to further examine the mechanism of space charge formation, we have developed a new system that allows in situ space charge observation during ion migration tests at high temperature and high humidity. Using this in situ system.

  • PDF

The Effect of Processing Parameters to Manufacture Self-healing Microcapsules for Composite Materials (복합재료의 자가 치료용 캡슐 제작시 공정 변수들의 영향)

  • Yoon, YoungKi;Yoon, HiSeak
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.4
    • /
    • pp.135-141
    • /
    • 2001
  • An experimental study to find the effect of processing parameters for self-healing microcapules is performed. These microcapsules can be applied to accomplish the healing of delamination damage in woven E-glass/epoxy composites. This paper introduces the self-healing concept and presents a method for solving the microcapsule size and shape. Additionally, processing parameters are varied during the formation of microcapsules and these capsules are observed through optical microscope. To obtain thermogravimetric(TG) curve for the manufactured microcapsules, TGA tests are executed. From these results, the best processing conditions for the formation of capsules are found as follows: (1) temperature of solution $ 50^{\circ}C$, (2) potential of hytdrogen(pH) 3.5ppm, and (3) agitation 500~600rpm.

  • PDF

A Study on the Characteristics of Surface Degradation & Degradation-Mechanism in UV Treated FRP (자외선 파장에 따른 FRP의 표면 열화특성 및 열화메커니즘에 관한 연구)

  • Lee, B.S.;Lim, K.B.;Na, D.G.;Chung, M.Y.;Chung, E.N.;You, D.H.;Lee, D.C.
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.813-815
    • /
    • 1998
  • In order to analyse the degradation process of epoxy/glass fiber for outdoor condition, FRP laminate was exposed to the wavelength of ultraviolet rays and evaluated by comparing contact angle, surface resistivity, surface potential decay, and ESCA spectrum respectively. Finally, We can conclude that the degradation phenomena on the surface of epoxy composites are dominated by the induction of ester and carboxyl groups.

  • PDF

Functionally Graded Polyurethane Elastomers Prepared By Electrophoresis

  • Zhang, Yuefan;Shiiba, Tetsuro;Furukawa, Mutsuhisa
    • Elastomers and Composites
    • /
    • v.34 no.5
    • /
    • pp.383-390
    • /
    • 1999
  • Functionally graded polyurethane elastomers PUEs/grad. Poly(dimethylammoninum ethylacrylate bromide)(PDMAEA) were prepared by the method of electrophoresis. Results of elemental analysis showed that concentration of PDMAEA had gradient across the thickness(2mm) of the base PUEs. The modified PUEs(PUEs/grad. PDMAEA) containing high concentration of PDMAEA displayed low degree of swelling in benzene which was poor solvent for PDMAEA, and high degree of swelling in water which was good solvent. For the each layer of modified PUEs, glass transition temperature, dynamic storage modulus were stooled by DSC, Rheovibron DDV-IIC dynamic viscoelastomer. The chemomechanical properties of modified PUEs was explored by the electric-stimulus.

  • PDF

A Study of Dynamic Viscoelastic Properties on Temperatures of Natural Rubber (천연고무의 온도에 따른 동적 점탄성 연구)

  • Lee, Bum-Chul;Yoo, Kil-Sang
    • Elastomers and Composites
    • /
    • v.32 no.1
    • /
    • pp.29-36
    • /
    • 1997
  • The change of elastic modulus(E'), loss modulus(E"), and loss $tangent(tan{\delta})$ were investigated on condition of double strain amplitude (DSA) at temperature of $-40{\sim}80^{\circ}C$ for carbon black filled natural rubber. E', E", and $tan{\delta}$ were increased as it closed to the glass transition temperature due to decrease of rubber network flexibility and carbon black agglomerate interaction. In the micro strain range, energy loss showed maximum value because of the chain slippage in rubber matrix, but the regeneration of carbon black agglomerate and rubber matrix affected decrease of energy loss over the mid-range strain. As a results of regression analysis, $E'\;_{max}$ correlation with ${\Delta}E'$ $(E'\;_{0.4%DSA}-E'\;_{2.0%DSA})$ showed linear relationship.

  • PDF