• Title/Summary/Keyword: Glass composites

Search Result 910, Processing Time 0.025 seconds

Applicability Assessment of Epoxy Resin Reinforced Glass Fiber Composites Through Mechanical Properties in Cryogenic Environment for LNG CCS (에폭시 수지가 적용된 유리섬유 복합재료의 극저온 환경 기계적 특성 분석을 통한 LNG CCS 적용성 평가)

  • Yeom, Dong-Ju;Bang, Seoung-Gil;Jeong, Yeon-Jae;Kim, Hee-Tae;Park, Seong-Bo;Kim, Yong-Tai;Oh, Hoon-Gyu;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.4
    • /
    • pp.262-270
    • /
    • 2021
  • Consumption of Liquefied Natural Gas (LNG) has increased due to environmental pollution; therefore, the need for LNG carriers can efficiently transport large quantities of LNG, is increased. In various types of LNG Cargo Containment System (CCS), Membrane-type MARK-III composed of composite materials is generally employed in the construction of an LNG carrier. Among composite materials in a Mark-III system, glass-fiber composites act as a secondary barrier to prevent the inner hull structure from leakage of LNG when the primary barrier is damaged. Nevertheless, several cases of damage to the secondary barriers have been reported and if damage occurs, LNG can flow into the inner hull structure, causing a brittle fracture. To prevent those problems, this study conducted the applicability assessment of composite material manufactured by bonding glass-fiber and aluminum with epoxy resin and increasing layer from three-ply (triplex) to five-ply (pentaplex). Tensile tests were performed in five temperature points (25, -20, -70, -120, and -170℃) considering temperature gradient in CCS. Scanning Electron Microscopy (SEM) and Coefficient of Thermal Expansion (CTE) analyses were carried out to evaluate the microstructure and thermos-mechanical properties of the pentaplex. The results showed epoxy resin and increasing layer number contributed to improving the mechanical properties over the whole temperature range.

Study of Mechanical Properties and Porosity of Composites by Using Glass Fiber Felt (유리섬유 부직포 사용에 따른 복합재의 기공률 및 물성에의 영향 분석)

  • Lee, Ji-Seok;Yu, Myeong-Hyeon;Kim, Hak-Sung
    • Composites Research
    • /
    • v.35 no.1
    • /
    • pp.42-46
    • /
    • 2022
  • In this study, when the carbon fiber composite was manufactured, the correlation between the porosity and mechanical properties according to the number of glass fiber felts laminated together and the stacking sequence was confirmed. The carbon fiber composite was manufactured by stacking glass fiber felts, which are highly permeable materials, and using vacuum assisted resin transfer molding (VARTM). Porosity was measured by photographing the cross-section of the specimen with an optical microscope and then using porosity calculation code of MATLAB, and mechanical properties were measured for tensile strength, modulus by tensile test. Furthermore, Pearson correlation coefficient between porosity and mechanical properties was calculated to confirm the correlation between two variables. As a result, the number of glass fiber felt increased and the distance from the center of laminated composites increased, the porosity increasing were confirmed. In addition, tensile strength/modulus showed a weak positive correlation with porosity. Also, in order to confirm the effect of only porosity on tensile strength and modulus, mechanical properties calculated by CLPT (Classical Laminate Plate Theory) and experimental values were compared, and the difference in tensile strength showed a strong positive correlation with porosity and the difference in modulus showed a weak positive correlation with porosity.

Antenna Integration with Composite Sandwich Structure using Transmission/Reflection Methods of Incident Wave (신호의 투과/반사법을 이용한 복합재료 샌드위치 구조 속으로의 안테나 삽입)

  • You, C.S.;Hwang, W.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.55-58
    • /
    • 2005
  • The present study aims to design electrically and structurally effective antenna structures in order that the structural surface itself could become the antenna. The basic design concept is composite sandwich structure in which microstrip antenna is embedded and this is termed composite smart structure (CSS). The most important outstanding problem is that composite materials of structural function cannot be used without reducing antenna efficiency. Unfortunately, such materials have high electrical loss. This is a significant design problem that needs to be solved in practical applications. Therefore, the effects of composites facesheet on antenna performances are investigated in the first stage and changes in the gain of microstrip antenna due to composites facesheet have been determined. ‘Open condition’ is defined when gain is maximized and is a significant new concept for the design of high-gain antennas considering bandwidth in practical application. The open condition can be made with the outer facesheet by controlling its position. In the design of CSS, glass/epoxy composites and Nomex honeycomb were used with exploiting open condition. Experiments, confirm that the gain is improved and the bandwidth is also as wide as specified in our requirements. With the open condition, wideband antenna can be integrated with mechanical structures without reducing any electrical performances, as confirmed experimentally here.

  • PDF

Design and Fabrication of Composite Smart Structures for Communication (복합재료를 이용한 통신용 지능구조물 설계 및 제작)

  • You, C.S.;Hwang, W.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.346-349
    • /
    • 2005
  • The present study aims to design electrically and structurally effective antenna structures in order that the structural surface itself could become the antenna. The basic design concept is composite sandwich structure in which microstrip antenna is embedded and this is termed composite smart structure (CSS). The most important outstanding problem is that composite materials of structural function cannot be used without reducing antenna efficiency. Unfortunately, such materials have high electrical loss. This is a significant design problem that needs to be solved in practical applications. Therefore, the effect of composites facesheet on antenna performances is studied in the first stage. Changes in the gain of microstrip antenna due to composites facesheet have been determined. 'Open condition' is defined when gain is maximized and is a significant new concept in the design of high-gain antennas considering bandwidth in practical application. The open condition can be made with any thickness of outer facesheet by controlling its position. In the design of CSS, glass/epoxy composites and Nomex honeycomb were used with exploiting open condition. Experiments, confirm that the gain is improved (over 11 dBi) and the bandwidth is also as wide as specified in our requirements (over 10% at 12.2 GHz). With the open condition, wideband antenna can be integrated with mechanical structures without reducing any electrical performances, as confirmed experimentally here.

  • PDF

Member design and strength characteristics of the MMA mortar composites (I) (MMA 모르터 복합체의 강도특성 및 부재설계 (I))

  • Ji, Hyo-Seon;Mamdouh, El-Badry
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.3
    • /
    • pp.41-49
    • /
    • 2015
  • The repair of manhole raise has been caused much construction times and disruption of traffic flow, serious environmental pollution from crushed construction wastes, and budget waste due to the repeated repair construction works. In order to overcome such problems, we have developed the new manhole repairing composite structures by using a glass fiber-reinforced polymer (GFRP) pipe, which can raise manhole to the regular height of the overlayed road pavement with rapid construction and minimum traffic jams. This environmental-friendly technology is method completed by the methyl methacrylate monomer (MMA) double wide flanged GFRP pipe composite structures in order to raise manhole to the regular height. In this paper, two kinds of the compressive strength tests of MMA mortar composites were conducted and evaluated by a general compressive strength test, and compressive strength test after freezing-thawing resistance test. It was found that this MMA mortar composites will be used for the application of the double wide flanged GFRP pipe composite structures.

Formation of $Al_2O_3$-Ceramics by Reactive Infiltration of Al-alloy into Insulation Fiber Board (Al-합금의 단열섬유판 반응침투에 의한 $Al_2O_3$-세라믹스의 형성)

  • 김일수
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.5
    • /
    • pp.483-490
    • /
    • 1997
  • Al2O3/metal composites were fabricated by oxidation and reaction of molten Al-alloy into two types of commercial Al2O3-SiO2 fibrous insulation board. The growth rate, composition and microstructure of these materials were described. An AlZnMg(7075) alloy was selected as a parent alloy. Mixed polycrystalline fiber and glass phase fiber were used as a filler. The growth surface of an alloy was covered with and without SiO2. SiO2 powder was employed as a surface dopant to aid initial oxidation of Al-alloy. Al-alloy, SiO2, fiber block and growth inhibitor CaSiO3 were packed sequentially in a alumina crucible and oxidized in air at temperature range 90$0^{\circ}C$ to 120$0^{\circ}C$. The growth rate of composite layer was calculated by measuring the mass increasement(g) per unit surface($\textrm{cm}^2$). XRD and optical microscope were used to investigate the composition and phase of composites. The composite grown at 120$0^{\circ}C$ and with SiO2 dopant showed rapid growth rate. The growth behavior differed a little depending on the types of fiber used. The composites consist of $\alpha$-Al2O3, Al, Si and pore. The composite grown at 100$0^{\circ}C$ exhibited better microstructure compared to that grown at 120$0^{\circ}C$.

  • PDF

Characterization and Prediction of Elastic Constants of Twisted Yarn Composites (Twisted Yarn 복합재료의 물성치 시험 및 탄성계수 예측)

  • 변준형;이상관;엄문광;김태원;배성우
    • Composites Research
    • /
    • v.15 no.6
    • /
    • pp.30-37
    • /
    • 2002
  • A stiffness model has been proposed to predict elastic constants of twisted yam composites. The model is based upon the unit cell structure, the coordinate transformation, and the volume averaging of compliance constants for constituent materials. For the correlation of analytic results with experiments, composite samples of various yam twist angles were tested, and strength and Young's modulus under tensile, compressive, and shear loading have been obtained. The sample was fabricated by the RTM process using glass yarns and epoxy resin. The correlations of elastic constants showed relatively good agreements. The model provides the predictions of the three-dimensional engineering constants, which are valuable input data for the analytic characterization of textile composites made of twisted yam.

Study on the Improvement of Epoxy Property for Aluminum Conductor Composite Core (복합재료 중심인장선용 에폭시 물성 개선 연구)

  • Heo, Seok-Bong;Kang, Junyoung;Youn, Young-Gil;Goh, Munju;Kim, Nam Hoon
    • Composites Research
    • /
    • v.32 no.6
    • /
    • pp.349-354
    • /
    • 2019
  • The Aluminum conductor composite core consists of fast-curing thermosetting epoxy used as reinforcements and carbon fiber and glass fiber used as matrix. In this study, we have investigated fast curing epoxy cured products used for composite core(Aluminum Conductor Composite Core, ACCC). Tetrafunctional epoxy(PA 806) was used as a multifunctional epoxy, along with two kinds of curing agents, MNAn(5-Methyl-5-norbornene-2,3-dicarboxylic anhydride) and HHPA(Hexahydrophthalic Anhydride), to make an epoxy cured product and their properties were evaluated. Optimum conditions are confirmed by varying the content of curing accelerator in the selected epoxy and curing agent.

Strength Evaluation and Eailure Analysis of Unidirectional Composites Using Monte-Carlo Simulation (몬테카를로 시뮬레이션을 이용한 일방향 복합재의 강도평가 및 파손 해석)

  • Kim, Jeong-Gyu;Park, Sang-Seon;Kim, Cheol-Su;Kim, Il-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.12
    • /
    • pp.2917-2925
    • /
    • 2000
  • Tensile strength and failure process of composite materials depend on the variation in fiber strength, matrix properties and fiber-matrix interfacial shear strength. A Monte-Carlo simulation considering variation in these factors has been widely used to analyze such a complicated phenomenon as a strength and simulated the failure process of unidirectional composites. In this study, a Monte Carlo simulation using 2-D and 3-D(square and hexagonal array) model was performed on unidirectional graphite/epoxy and glass/polyester composites. The results simulated by using 3-D hexagonal array model have a good agreement with the experimental data which were tensile strength and failure process of unidirectional composites.

Carbon Nanotube/Nafion Composites for Biomimetic Artificial Muscle Actuators

  • Lee, Se-Jong;Yoon, Hyun-Woo;Lee, Deuk-Yong
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.4 s.299
    • /
    • pp.198-201
    • /
    • 2007
  • Multi-walled carbon nanotube (M-CNT)/Nafion nanocomposites were prepared by solution casting to elucidate the effect of M-CNT addition, from 0 to 7 wt%, on the viscoelastic behavior of the composites. The M-CNT bundles induced by the Nafion polymer were determined to be uniformly distributed for the 1 wt% M-CNT/Nafion nanocomposites. The 1 wt% M-CNT/Nafion composite exhibited the highest blocking stress of 2.3 kPa due to its high elastic modulus of 0.485 GPa. From a dynamic mechanical analysis, the 1 wt% M-CNT had the highest storage and loss moduli compared with the other samples in all frequency and temperature ranges. From the storage modulus data, the M-CNT loaded composites had similar $T_g$ values near $120^{\circ}C$. The glass transition temperatures of the M-CNT loaded composites were $120^{\circ}C$ (1 wt%), $117^{\circ}C$ (3 wt%), $117^{\circ}C$ (5 wt%), and $135^{\circ}C$ (7 wt%), suggesting that the effect of the M-CNTs on the Nafion film begins at 1 wt%. Thus, it has been concluded that the 1 wt% M-CNT disported composite is attractive for actuator applications.