• Title/Summary/Keyword: Glass bead

Search Result 158, Processing Time 0.033 seconds

Assessing the Refractive Index of Glass Beads for Use in Road-marking Applications via Retroreflectance Measurement

  • Shin, Sang Yeol;Lee, Ji In;Chung, Woon Jin;Cho, Sung-Hoon;Choi, Yong Gyu
    • Current Optics and Photonics
    • /
    • v.3 no.5
    • /
    • pp.415-422
    • /
    • 2019
  • Retroreflection of vehicle headlights, as induced by spherical glass beads, is a key optical phenomenon that provides road-surface markings with greatly enhanced visibility, thus better securing a driver's safety in the nighttime as well as in unclear daytime. Retroreflectance of glass beads is a quite sensitive function of their refractive index, so that measurement of the refractive index of glass specifically in the shape of spherical beads needs to be performed within a reasonable uncertainty that is tolerable for road-marking applications. The Becke line method has been applied in assessing refractive index of such glass beads as e.g. an industrial standard in the Republic of Korea; however, the reference refractive-index liquids are not commercially available these days for refractive index greater than 1.80 due to the toxicity of the constituent materials. As such, high-refractive-index glass beads require an alternate method, and in this regard we propose a practically serviceable technique with uncertainty tantamount to that of the Becke line method: Based on comparison of calculated and measured retroreflectance values of commercial glass beads, we discover that their refractive index can be determined with reasonable precision via the retroreflectance measurement. Specifically, in this study the normalized retroreflectance originating from a single glass sphere is computed as a function of refractive index using the Fresnel equations, which is then validated as coinciding well with retroreflectance values measured from actual specimens, i.e. glass-bead aggregates. The uncertainties involved are delineated in connection with radius and imperfections of the glass beads.

An Experimental study on the Freezing Phenomena of Saturated Porous Media in a Rectangular Cavity (장방형내 함수 다공성 물질의 동결거동에 관한 실험적 연구)

  • Kim, B.C.;Kim, J.I.;Kim, J.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.3 no.5
    • /
    • pp.386-394
    • /
    • 1991
  • Freezing of saturated porous media contained in a rectangular cavity has been studied experimentally. Water and different diameter glass beads consitituted the liquid and porous media. Solidification front shape, the effects of bead diameter and initial liquid temperature was investigated. When the hot wall temperature was below $4^{\circ}C$, the freezing rate was higher at the top than at the bottom due to the density inversion, but with increasing the hot wall temperature the freezing rate at the top was effected by the liquid temperature and was lower than at the bottom. With increasing the bead diameter, the difference of freezing rate between top and bottom was increased and depends on thermal conductivity. When the liquid temperature was low in the beginning, the freezing rate was high, but with increasing the time almost the same with those of high temperature liquid.

  • PDF

Disrupting Escherichia coli: A Comparison of Methods

  • Benov, Ludmil;Al-Ibraheem, Jameela
    • BMB Reports
    • /
    • v.35 no.4
    • /
    • pp.428-431
    • /
    • 2002
  • The often-encountered problem of disrupting bacteria for the purpose of extracting soluble protein has generated various methods. Many require specialized equipment. Very often, especially during preliminary studies, investigators need a simple, fast, and inexpensive method for cell disruption that preserves biological activity. This paper compares some simple and inexpensive methods for cell disruption, such as bead-vortexing, freesing-thawing, French pressing, and sonication. It also provides some tips to increase protein yield and preserve biological activity. If performed under optimal conditions, bead-vortexing gives protein yields that are comparable to French pressing and sonication. It also preserves the activities of labile enzymes and releases periplasmic enzymes. Vortexing with glass beads appears to be the simplest method for cell disruption.

A Characteristics Classification by Beads Analysis of the Tombs of Deokcheon-ri in Uljin, Korea. (울진 덕천리 신라묘군 출토 구슬류의 특성 고찰)

  • Lee, Minhee;Kim, Gyu-Ho
    • Conservation Science in Museum
    • /
    • v.22
    • /
    • pp.69-84
    • /
    • 2019
  • This study investigated the formal characteristics and chemical compositions of eighty beads excavated from a Silla tomb complex at Deokcheon-ri, Uljin in order to reveal the methods of production and the characteristics of the raw materials involved, thereby illuminating characteristics of the relics from each tomb. The beads excavated from these Silla tombs include one curved bead, one tubular bead, and 78 globular beads. Among them, the curved and tubular beads and three globular beads were identified to be made of minerals, and the remaining 75 beads are made of glass. Most of the glass beads are thought to have been produced using the drawing technique. The characteristics of the beads were classified according to their site of excavation. The globular beads from Tomb No. 34 belong to the lead-barium glass and potash glass groups, indicating that these beads were produced at a relatively earlier period in time. The glass beads excavated from the tombs in the northern portion of the complex differ in color and chemical composition from those in the southern portion, which indicates the character that each group of beads had different aspect according to site location. Considering that the excavated beads were mainly from fifth- and sixth-century tombs, it is likely that certain groups of people living around Uljin used and buried beads in their tombs. As the governance of Silla became more centralized in the sixth century, the use of beads for burial purpose appears to have come to an end in this region.

Effects of Substrate Size on the Growth of 4 Microphytobenthos Species (Achnanthes sp., Amphora sp., Navicula sp. and Nitzschia sp.) (저서미세조류 4종(Achnanthes sp., Amphora sp., Navicula sp. 그리고 Nitzschia sp.)의 성장에 영향을 미치는 부착기질 크기의 영향)

  • Kwon, Hyeong-Kyu;Yang, Han-Soeb;Yu, Yeoung-Moon;Oh, Seok-Jin
    • Journal of Environmental Science International
    • /
    • v.21 no.1
    • /
    • pp.105-111
    • /
    • 2012
  • The effects of substrate size on the growth of microphytobenthos Achnanthes sp., Amphora sp., Navicula sp. and Nitzschia sp. were examined using glass beads in order for phytoremediation in the benthic layer of coastal waters. The glass beads used in this study were 0.09~0.15 mm (G.B 1), 0.25~0.50 mm (G.B 2), 0.75~1.00 mm (G.B 3) and 1.25~1.65 mm (G.B 4). No addition of glass bead used as control. The specific growth rate and maximum cell density of four microphytobenthos species were increasing with decreasing size of glass beads. Moreover, the control experiment without added attachment substrates showed the lowest specific growth rate and maximum cell density. Therefore, the suitable attachment substrates for mass culture of microphytobenthos seems to be important in order for phytoremediation using microphytobenthos.

Preparation process of functional particles: II. Particle coating by rapid expansion of supercritical fluid solutions (기능성 미분말의 제조공정에 관한 연구: II. 초임계 분출법에 의한 입자 코팅)

  • 류완원;김영도;신건철
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.4
    • /
    • pp.673-676
    • /
    • 1998
  • The Rapid Expansion of Supercritical fluid Solutions (RESS) process was applied to particles coating. Experiments were conducted in a fluidized bed with an internal nozzle in the center of the reaction tube. Pure glass beads (500~590$\mu$m, 74~149$\mu$m) and glass beads covered with brilliant blue were used as the core particles. Supercritical $CO_2$ solutions of paraffin were expanded through the nozzle into the bed that was fluidized by air. The precipitate coating materials on core surface was analyzed by using SEM, FT-IR. The releasing behavior of brilliant blue was inspected by atomic absorbance spectrophotometer. The release behavior of coated particles superior to noncoated particles.

  • PDF

Study on Impact Properties of Polyamide 12 depending on Temperature by Selective Laser Sintering Process (선택적 레이저 소결 공정 적용 폴리아미드 12의 온도별 충격 특성에 관한 연구)

  • Kim, Moosun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.136-142
    • /
    • 2018
  • Additive manufacturing process technology, known as the 3D printing process, is expanding its utilization from simple model realization to commercialized part production based on continuous material development. Recently, research and development have been actively carried out to fabricate lightweight and high-strength parts using polymers, such as polyamide (polyamide), which is a high-strength engineering plastic material. In this study, the Izod impact characteristics were analyzed for polyamide 12 (PA12) materials. For the specimen production, selective laser sintering process technology, which has excellent mechanical properties of finished products, was applied. In addition, PA12 and glass bead reinforced PA12 materials were produced. The specimens were classified according to the production direction on the production platform, and each specimen was subjected to an Izod test at test temperatures of $-25^{\circ}C$, $25^{\circ}C$, and $60^{\circ}C$. As a result, the impact strength of PA12 and glass bead-reinforced PA12 of vertical direction specimens were 48.8% and 16.3% lower than those of the parallel specimens at a $25^{\circ}C$ test temperature and the impact strength of parallel specimens was improved by 46.5% and 20.4% at a test temperature of $60^{\circ}C$ compared to that at $-25^{\circ}C$.

Study on Flexural Properties of Polyamide 12 according to Temperature produced by Selective Laser Sintering (선택적 레이저 소결 제작 폴리아미드 12 시편의 온도별 굴곡 특성 연구)

  • Kim, Moosun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.319-325
    • /
    • 2018
  • The use of 3D printing (Additive Manufacturing) technology has expanded from initial model production to the mass production of parts in the industrial field based on the continuous research and development of materials and process technology. As a representative polymer material for 3D printing, the polyamide-based material, which is one of the high-strength engineering plastics, is used mainly for manufacturing parts for automobiles because of its light weight and durability. In this study, the specimens were fabricated using Selective Laser Sintering, which has excellent mechanical properties, and the flexural characteristics were analyzed according to the temperature of the two types of polyamide 12 and glass bead reinforced PA12 materials. The test specimens were prepared in the directions of $0^{\circ}$, $45^{\circ}$, and $90^{\circ}$ based on the work platform, and then subjected to a flexural test in three test temperature environments of $-25^{\circ}C$, $25^{\circ}C$, and $60^{\circ}C$. As a result, PA12 had the maximum flexural strength in the direction of $90^{\circ}$ at $-25^{\circ}C$ and $0^{\circ}$ at $25^{\circ}C$ and $60^{\circ}C$. The glass bead-reinforced PA12 exhibited maximum flexural strength values at all test temperatures in the $0^{\circ}$ fabrication direction. The tendency of the flexural strength changes of the two materials was different due to the influence of the plane direction of the lamination layer depending on the type of stress generated in the bending test.

Effect of glass beads on dispersion properties of EVA/MWCNT foams (유리비드가 EVA/MWCNT 발포체의 분산특성에 미치는 영향)

  • Kim, Taeyoon;Lee, Seunghyun;Ching, Ildoo
    • Journal of Adhesion and Interface
    • /
    • v.19 no.2
    • /
    • pp.68-73
    • /
    • 2018
  • In this study, conductive EVA foams including multi-wall carbon nanotubes (MWCNT), glass beads were prepared. The electrical conductivity and physical properties of the foams were confirmed with varying amount of MWCNT, mixing time, and amount of glass beads. The electrical conductivity increased with the amount of MWCNT. Dispersity of MWCNT in EVA foams were improved with glass beads. It can be suggested that conductive EVA foams can be successfully prepared with improved dispersity of MWCNT in ethylene-vinyl acetate by using glass beads.

초임계 유체를 이용한 피복형 복합입자의 합성

  • 류한원;김정환;김영도;신건철
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1997.10a
    • /
    • pp.93-97
    • /
    • 1997
  • $CO_2$ gas를 초임계상태의 유체로하고 그 용매에 코팅물질인 파라핀을 용해시켜 초임계 분출법(RESS)에 의해 핵입자 코팅을하여 복합입자를 제조하였고 그 용출 특성을 고찰하였다. 핵입자로는 입도분포가 다른 Glassb eads, Brilliant Blue(이하 BB)를 피복한 Glass beads, 분무건조법으로 제조한 염기성 탄산마그네시아의 Microcapsule(이하 MHC MC)을 사용하였다. 제조된 복합분체 표면을 SEM으로 관찰하였고 FT-IR을 사용하여 표면의 성분분석을 하였다. BB로 피복시킨 Glass beads는 Spectrophotometer로 BB가 용출되는 시간을 측정하였고 AA로 MHC MC중 Mg2+ ion의 release time이 7min, 26min, 30min으로 반응부에서 포집한 시료의 용출특성이 제일 우수하였다.

  • PDF