• Title/Summary/Keyword: Glass Fiber Reinforced Plastics

Search Result 108, Processing Time 0.027 seconds

Effect of fabrication processes on mechanical properties of glass fiber reinforced polymer composites for 49 meter (160 foot) recreational yachts

  • Kim, Dave Dae-Wook;Hennigan, Daniel John;Beavers, Kevin Daniel
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.2 no.1
    • /
    • pp.45-56
    • /
    • 2010
  • Polymer composite materials offer high strength and stiffness to weight ratio, corrosion resistance, and total life cost reductions that appeal to the marine industry. The advantages of composite construction have led to their incorporation in U.S. yacht hull structures over 46 meters (150 feet) in length. In order to construct even larger hull structures, higher quality composites with lower cost production techniques need to be developed. In this study, the effect of composite hull fabrication processes on mechanical properties of glass fiber reinforced plastic (GFRP) composites is presented. Fabrication techniques investigated during this study are hand lay-up (HL), vacuum infusion (VI), and hybrid (HL+VI) processes. Mechanical property testing includes: tensile, compressive, and ignition loss sample analysis. Results demonstrate that the vacuum pressure implemented dining composite fabrication has an effect on mechanical properties. The VI processed GFRP yields improved mechanical properties in tension/compression strengths and tensile modulus. The hybrid GFRP composites, however, failed in a sequential manor, due to dissimilar failure modes in the HL and VI processed sides. Fractography analysis was conducted to validate the mechanical property testing results.

S-2 Glass Fiber (Super Tensile Strength 유리섬유 방사연구)

  • Sung, Wan;Lee, Jae-Rak;Chang, Haeng-Jong;Kim, Yeong-Geun
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.212-215
    • /
    • 2000
  • For the production of high strength constructional glass reinforced plastics and various composite materials continuous glass fibers of high strength and increased modulus of elasticity are used. As is known, the glasses with highest strength were obtained in magnesia alumosilicate and magnesia lime-alumosilicate systems when introducing oxides of titanium and zirconium, boric anhydride, etc. in some cases. The experimental investigations have shown that some glass compositions are characterized by the ratio viscosity/crystallization which is favourable for glass fiber drawing process that permits the attainment of high strength level at the conditions of high temperature glass melting and formation.

  • PDF

Structural Analysis and Design of B-pillar Reinforcement using Composite Materials (복합소재를 활용한 B필러 강화재의 구조해석 및 설계)

  • Kang, Ji Heon;Kim, Kun Woo;Jang, Jin Seok;Kim, Ji Wook;Yang, Min Seok;Gu, Yoon Sik;Ahn, Tae Min;Kwon, Sun Deok;Lee, Jae Wook
    • Composites Research
    • /
    • v.34 no.1
    • /
    • pp.35-46
    • /
    • 2021
  • This paper aims to reduce weight by replacing the reinforcements of the B-pillar used in vehicles with CFRP(Carbon Fiber Reinforced Plastics) and GFRP(Glass Fiber Reinforced Plastics) from the existing steel materials. For this, it is necessary to secure structural stability that can replace the existing B-pillar while reducing the weight. Existing B-pillar are composed of steel reinforcements of various shapes, including a steel outer. Among these steel reinforcements, two steel reinforcements are to be replaced with composite materials. Each steel reinforcement is manufactured separately and bonded to the B-pillar outer by welding. However, the composite reinforcements presented in this paper are manufactured at once through compression and injection processes using patch-type CFRP and rib-structured GFRP. CFRP is attached to the high-strength part of the B-pillar to resist side loads, and the GFRP ribs are designed to resist torsion and side loads through a topology optimization technique. Through structural analysis, the designed composite B-pillar was compared with the existing B-pillar, and the weight reduction ratio was calculated.

The Effect of ATH and Sb$_2$O$_3$on the Flammability and Mechanical Properties of Fiber Reinforced Plastics (ATH, Sb$_2$O$_3$조성에 따른 복합재료의 난연특성)

  • 강길호;최원종;김진곤;권경옥;박상윤;사공성호;김해형
    • Fire Science and Engineering
    • /
    • v.16 no.4
    • /
    • pp.65-71
    • /
    • 2002
  • In this paper, the thermal and flame properties of GFRP with various flame retardant(aluminum trihydrate, antimony trioxide) compositions have been investigated by thermal analysis and flammability tests(LOI test, flammability 45 degree test). The flame and mechanical properties(hardness, tensile strength, modulus) of general purpose grade glass fiber/unsaturated polyester composite with flame retardant composition have been also evaluated. The effect of cure pressure on the flame properties of aerospace grade glass fiber/epoxy composite was investigated. Considering the flame and mechanical property of composite, we could determine the optimum flame retardant composition(ATH 10∼20 phr). Test results show that the flame property of glass fiber/epoxy composite is considerably affected by cure pressure conditions.

A Study on the Fracture Safety of Glass Fiber Reinforced Plastic Pipes (유리섬유 보강 플라스틱관의 파괴 안전성에 관한 연구)

  • 채원규
    • Journal of the Korean Society of Safety
    • /
    • v.9 no.1
    • /
    • pp.121-126
    • /
    • 1994
  • In this thesis, a series of loading tests are conducted in order to investigate the fracture safety as structural materials of GFRP(Glass Fiber Reinforced Plastics) which we wifely used in the developed countries becauses of their natural of anticorrosion and lightweight etc.. In the fracture test, the mid-span displacement, the strain and the yield load of the GFRP pipes are measured for different number of laminates, and fracture energy is estimated. From this study, it is known that GFRP pipe could be used as structural materials in underground buried pipes if their ductility and strength are increased by controlling number of laminates. Furthermore, because of their merit of lightweight, they can contribute greatly to reduction of construe-tlon cost when they are employed.

  • PDF

An Experimental Study on the Safety of Glass Fiber Reinforced Plastic Pipes under Fatigue Load (피로하중을 받는 유리섬유 보강 플라스틱관의 안전성에 관한 연구)

  • 채원규
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.3
    • /
    • pp.154-159
    • /
    • 1996
  • In this thesis, a series of loading tests are conducted in order to investigate the fracture safety of GFRP(Glass Fiber Reinforced Plastics) pipes under fatigue load which are widely used in the developed countries becauses of their natural of anticorrosion and lightweight etc. . Fatigue test is performed by changing number of laminates and loading cycles to examine the flexural strains, the ductility and the fatigue strength for two million repeated loading cycles. From the fatigue test results, it was found that the larger the laminates of GFRP pipes is, the larger the stiffness of GFRP pipes under the fatigue load increases. This phenomenon is true until the fatigue failure. According to the S-N curve drawn by the regression analysis on the fatigue test results, the fatigue strength of percent of the static ultimate strength increases by increasing the laminates of GFRP pipes. The fatigue strength with two million repeated leading cycles in GFRP pipes with the laminates of GFRP pipes varing 15, 25, 35 shows about 75%, 80%, 84% on the static ultimate strength, respectively.

  • PDF

Prediction of Mechanical Property of Glass Fiber Reinforced Polycarbonate and Evaluation of Warpage through Injection Molding (유리섬유로 강화된 폴리카보네이트의 기계적 물성예측 및 사출성형을 통한 휨의 평가)

  • Moon, Da Mi;Choi, Tae Gyun;Lyu, Min-Young
    • Polymer(Korea)
    • /
    • v.38 no.6
    • /
    • pp.708-713
    • /
    • 2014
  • Most plastics products are being produced by injection molding process. However, mold shrinkage is inevitable in injection molding process and it deteriorates dimensional quality through deflections and warpages. Mold shrinkage depends upon the material property of resin as well as injection molding condition. In this study, material property of resin has been predicted for glass fiber reinforced polycarbonate to control the warpage, and computer simulation of injection molding has been performed using predicted property. It was observed that the deflection of part decreased by the glass fiber reinforced resin. In order to verify the validity of this method and confidence of results, experiments of injection molding were performed. The results of experiments and computer simulations showed good agreement in their tendency of deflections. Consequently, it was concluded that the method of designing the material property of resin conducted in this study can be utilized to control the dimensional accuracy of injection molded products.

A Study on the Dielectric Strength of Composite Materials(I) (복합재료의 전기적 절연특성과 개발에 관한 연구(I))

  • 정은식;강창남;박정후
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.34 no.8
    • /
    • pp.323-330
    • /
    • 1985
  • Dielectric loss tangent and ac dielectric strength of GFRP (Glass Fiber Reinforced Plastics, G-10)was investigated as parameters of mechanical and thermal stresses, in order to study the basic dielectrical characteristics of composite insulating materials. The dielectric loss tangent was increased and the ac dielectric strength was decreased with increase in the mechanical stresses beyond the mechanical yield point on account of fiber-matrix debonding, but the dielectric constant was not varied sigificantly. the dielectric strength of G-10 was about 2 MV/cm and the dielectric constant was about 4.8.

  • PDF

Characteristics of tool wear in cutting of glass fiber reinforced platics (GFRP) (유리섬유 강화 플라스틱 절삭에서의 공구마멸특성)

  • 이원평
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.9 no.5
    • /
    • pp.49-56
    • /
    • 1987
  • This paper is a study on the effect of the cutting speed on the tool wear in turning of the glass fiber reinforced plastics. The wear behavior of cutting tool is studied by means of turning, changing the cutting speed and feed in the wide range. Moreover, the theoretical model applicable to the cutting speed of wide range is analysed. The main results obtained are as follows: The relation between the tool wear and the cutting speed is divided into three range in case of the constant cutting distance. 1) At the low cutting speed, the tool wear is independent of the cutting speed, but dependent mainly on the contact length between tool and glass fiber(lst range). 2) At the high cutting speed, the tool wear is independent of the contact length, and dependent on the cutting speed only(2nd range). The tool wear increases in proportion to the cutting speed. 3) At the higher cutting speed than the speed in the 2nd range, the tool wear is independent both of the cutting speed and the contact length(3rd range). 4) In the 3rd range, tool flank wear is constant and is observed that only the wear of cutting edge increases.

  • PDF

Evaluation on Tensile Properties and Fracture Toughness of Glass Fiber/Aluminum Hybrid Laminates (유리섬유/알루미늄 혼성 적층판의 인장특성과 파괴인성 평가)

  • Woo Sung-Choong;Choi Nak-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.6 s.237
    • /
    • pp.876-888
    • /
    • 2005
  • Tensile properties and fracture toughness of monolithic aluminum, fiber reinforced plastics and glass fiber/aluminum hybrid laminates under tensile loads have been investigated using plain coupon and single-edge-notched specimens. Elastic modulus and ultimate tensile strength of GFMLs showed different characteristic behaviors according to the Al kind, fiber orientation and composition ratio. Fracture, toughness of A-GFML-UD which was determined by the evaluation of $K_{IC}$ and $G_{IC}$ based on critical load was similar to that of GFRP-UD and was much higher than monolithic Al. Therefore, A-GFML-UD presented superior fracture toughness as well as prominent damage tolerance in comparison to its constituent Al. By separating Al sheet from GFMLs after the test, optical microscope observation of fracture zone of GFRP layer in the vicinity of crack tip revealed that crack advance of GFMLs depended on the orientation of fiber layer as well as Al/fiber composition ratio.