• 제목/요약/키워드: Glass Fiber Reinforced Composite Material

검색결과 185건 처리시간 0.026초

브레이드 투루젼법에 의한 콘크리트 구조물용 케블라-유리섬유 강화 복합재료 리바 특성 (Characteristics of Kevlar-Glass fiber reinforced plastic for Concrete Structure by the Braidtrusion process)

  • 최명선;곽상묵;배시연;이동기;심재기;한길영
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 춘계학술발표대회 논문집
    • /
    • pp.48-52
    • /
    • 2002
  • This paper describes the need for a ductile Fiber Reinforced Plastic(FRP) reinforcement for Concrete Structures. Using the material hybrid and geometric hybrid, it is demonstrated that the pseudo-ductility Characteristic can be generated in FRP rebar. Ductile hybrid FRP bars were successfully fabricated at Ø3mm and Ø10mm nominal diameters using the braidtrusion process. Tensile and bending specimens from these bars were tested and compared with behavior of stress-strain of steel bar and GFRP rebar

  • PDF

나노입자 첨가 유리섬유강화 복합재료의 전자기파 차폐특성 (Electromagnetic-wave Shielding by Nano Particles-contained Glass Fiber Reinforced Composite Materials)

  • 정우균;안성훈;원명식
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.1331-1334
    • /
    • 2004
  • The research on electromagnetic shielding has been advanced for military applications as well as for commercial products. Utilizing the reflective properties and absorptive properties of shielding material, the replied signal measured at the rear surface or at the signal source can be minimized. The shielding effect was obtained from materials having special absorptive properties or from structural characteristics such as stacking sequence. Recently researchers studied the electromagnetic properties of nano size particles. In this research {glass fiber}/{epoxy}/{nano particle} composites(GFR-Nano composites), was fabricated using various nano particles, and their properties in electromagnetic shielding were compared. For the visual observation of the nano composite materials, SEM(Scanning Electron Microscope) and TEM(Transmission Electron Microscope) were used. For the measurement of electromagnetic shielding, HP8719ES S-parameter Vector Network Analyser System was used on the frequency range of 8 GHz~12GHz. Among the nano particles, carbon black and Multi-Walled Carbon Nano-Tube (MWCNT) revealed outstanding electromagnetic shielding. Although silver nano particles (flake and powder) were expected to have effective electromagnetic shielding due to their excellent electric conductivities, test showed little shielding effect.

  • PDF

Prediction of Deterioration Rate for Composite Material by Moisture Absorption

  • Kim, Yun-Hae;An, Seung-Jun;Jo, Young-Dae;Bae, Chang-Won;Moon, Kyung-Man
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제34권2호
    • /
    • pp.296-302
    • /
    • 2010
  • If the fiber reinforced plastic is exposed to the moisture for a long period of time, most of moisture absorption occurs on the resin place, thus dropping cohesiveness between the molecules as the water molecules permeated between high molecular chains grant high molecular mobility and flexibility. Also as the micro crack occurs due to the permeation of moisture on the interface of glass fiber and epoxy resin, it is developed to the overall damage of interface place. Hence, the study on absorption is essential as the mechanical and physical properties of fiber reinforced composites are reduced. However, the study on absorption has the inconvenience needing to expose composite materials to fresh water or seawater for 1 month or up to 1 year. Therefore, this study has exposed fiber reinforced composites to fresh water and has developed a model with an accuracy of 98% after comparing the analysis value obtained by using ANSYS while basing on the experimental value of property decline by absorption and the basic properties of glass fiber and epoxy resin used in the experiment.

Material Property-Estimate Technique Based on Natural Frequency for Updating Finite Element Model of Orthotropic Beams

  • Kim, Kookhyun;Park, Sungju;Lee, Sangjoong;Hwang, Seongjun;Kim, Sumin;Lee, Yonghee
    • 한국해양공학회지
    • /
    • 제34권6호
    • /
    • pp.481-488
    • /
    • 2020
  • Composite materialsuch as glass-fiber reinforced plastic and carbon-fiber reinforced plastic (CFRP) shows anisotropic property and have been widely used for structural members and outfitings of ships. The structural safety of composite structures has been generally evaluated via finite element analysis. This paper presents a technique for updating the finite element model of anisotropic beams or plates via natural frequencies. The finite element model updates involved a compensation process of anisotropic material properties, such as the elastic and shear moduli of orthotropic structural members. The technique adopted was based on a discrete genetic algorithm, which is an optimization technique. The cost function was adopted to assess the optimization problem, which consisted of the calculated and referenced low-order natural frequencies for the target structure. The optimization process was implemented with MATLAB, which includes the finite element updates and the corresponding natural frequency calculations with MSC/NASTRAN. Material properties of a virtual cantilevered orthotropic beam were estimated to verify the presented method and the results obtained were compared with the reference values. Furthermore, the technique was applied to a cantilevered CFRP beam to successfully estimate the unknown material properties.

Study on The Preparation and Mechanical Properties of Fiberglass Reinforced Wood-Based Composite

  • Zhang, Yang;Ma, Yan
    • Journal of the Korean Wood Science and Technology
    • /
    • 제44권4호
    • /
    • pp.505-514
    • /
    • 2016
  • To study mechanical properties of fiberglass reinforced wood-based composite (FRWC), fiberglass with a diameter of $20{\mu}m$ was selected to prepare test specimens. Mechanical properties of fiberglass reinforced wood-based composite were determined by three-point-bending test while its microstructure was characterizes by scanning electron microscopy (SEM). The results showed that mechanical properties of fiberglass reinforced wood-based composite were superior to that of the wood fiberboard based on the contrasting mechanical curves and the analysis of fracture mechanism. It is believed that the material design with this "sandwich" structure brings a unique buffering capacity of fiberglass into play in the composites. So the specimen did not produce a sudden fracture failure at high level of applied loads because it had a bearing ability. The SEM analysis showed that the working strength of PVAc adhesive was high; under a bearing force, it could properly transfer a load. In addition, glass fiber mesh and wood fiber board combined well.

경량화와 안전을 위한 폴리머 복합재료 사출품의 강도특성 (The Strength Characteristics of Polymer Composites Injection Parts for Lightness and Safety)

  • 윤여권;김진호
    • 대한안전경영과학회지
    • /
    • 제13권4호
    • /
    • pp.101-108
    • /
    • 2011
  • In this paper deals with strength of glass fiber reinforced plastics produced by shouting machine was investigated by universal testing instrument. We can obtain following results by performing the strength evaluation of polymer composite material according as varied environment temperature. The effect of environmental temperature on Strength properties was more sensitive in the weld specimen than parent. When changed environmental temperature, variation of strength in the parent was much bigger than it of weld specimen, that is, matrix in the parent, orientation in the specimen ware more sensitive to environmental strength. Tensile strength of polycarbonate matrix was similar regardless of mold temperature.

유리섬유 강화 열가소성 복합재료 고상 성형품의 충격특성에 관한 연구 (A Study on the Impact Properties of Solid-phase Formed Glass Fiber Reinforced Thermoplastic Composite)

  • 이중희;정광진;최창근
    • Composites Research
    • /
    • 제12권6호
    • /
    • pp.8-14
    • /
    • 1999
  • 본 연구는 고상 성형된 유리섬유 강화 폴리프로필렌의 충격강도에 대한 연구와 성형동안의 재료거동에 대한 미시적 관찰을 행하고자 하였다. 재료의 충격강도 측정을 위해 노치가 없는 시편을 가지고 Izod충격시험을 행하였다. 충격시험에 사용된 복합재료는 중량비로 20%, 30%와 40%의 유리섬유를 함유한 재료이다. 고상 성형품의 성형변형률에 따른 충격강도의 변화를 연구하기 위해 충격시편은 10%, 20% 및 30% 변형률까지 인장 성형 후 제작되었다. 성형온도에 따른 제품의 충격강도의 변화를 살펴보기 위하여 $100^{\circ}C$, $125^{\circ}C$$150^{\circ}C$에서 성형을 행하였다. 성형된 시편의 충격강도는 유리섬유의 함유량이 증가함에 따라서 증가함을 보였다.

  • PDF

형상이 다른 나노입자 스프레이 코팅에 따른 탄소계 강화 유리섬유와 에폭시 수지간 계면강도 관찰 (Investigation of Interfacial Adhesion of Different Shapes of Nano Carbon Fillers Reinforced Glass Fiber/Epoxy Composites by Spray Coating)

  • 권동준;왕작가;최진영;신평수;이은선;박종만
    • Composites Research
    • /
    • 제27권3호
    • /
    • pp.109-114
    • /
    • 2014
  • 나노입자에 대한 복합재료 수요가 증가되면서 효과적인 나노입자 보강재를 이용한 나노복합재료 제조공정 단순화를 추구하고 있다. 본 연구에서는 나노입자를 활용하여 전도성과 계면 강도를 향상시킨 나노입자 강화유리섬유 소재에 대한 연구를 진행하였다. 탄소계 나노입자의 형상에 따른 유리섬유 표면에 흡착된 나노입자 상태를 FE-SEM으로 분석하였다. 나노입자 코팅층의 내구성을 평가하기 위한 방법으로 초음파 세척과정에 따른 나노입자의 세척 정도를 분석하여 탄소계 나노입자의 형상에 따른 나노입자 코팅층의 내구성을 분석하였다. 동적피로 실험을 통하여 나노입자 강화 유리섬유/에폭시의 계면강도를 나노입자 형상에 따른 차이에 따라 비교하였다. 나노입자 코팅층의 내구성은 단섬유 강화 복합재료시편을 이용하여 분석하였다. 겉보기 강성도 결과와 나노입자코팅층의 전도성 변화를 분석하여 코팅층의 다기능성을 분석할 수 있었다. 판상형의 나노입자 보다는 섬유 형태의 나노입자가 유리섬유 표면에 흡착성이 용이하였다. 계면 내구성 및 안정성에 효과가 있음을 확인하였다.

스테인레스 섬유를 충전제로 사용한 섬유강화 복합재료의 전자파 차폐 효과 (Electromagnetic Interference Shielding Effect of Fiber Reinforced Composites with Stainless Fiber Conductive Filler)

  • 한길영;송동한;안동규
    • 한국정밀공학회지
    • /
    • 제27권7호
    • /
    • pp.71-78
    • /
    • 2010
  • The objective of this research is to investigate the influence of material characteristic and design on to the electromagnetic interference (EMI) shielding characteristics. Basalt glass fiber reinforced composite specimens with stainless fiber conductive filler were manufactured to perform the electromagnetic interference shielding effectiveness(SE) experiments. In order to reflection and absorb the specimen in electromagnetic fields, flanged coaxial transmission line sample holder was fabricated according to ASTM D 4935-89. Electromagnetic shielding effectiveness(EMSE) was measured quantitatively to examine the electromagnetic shielding characteristics of designed specimens. The result of EMI shielding experiments showed that maximum EMSE value of sandwich type specimens with GSG(basalt glass fiber/stainless fiber/basalt glass fiber) and SGS(stainless fiber/basalt glass fiber/stainless fiber) were 65dB and 80dB at a frequency of 1,500MHz, respectively.

VARTM 법으로 제작한 탄소-유리/에폭시 하이브리드 적층재의 인장 특성 (Tensile Properties of Carbon-Glass/Epoxy Hybrid Laminates Produced by VARTM)

  • 김연직
    • 대한금속재료학회지
    • /
    • 제49권10호
    • /
    • pp.760-765
    • /
    • 2011
  • This paper presents a study of the tensile behavior of carbon and glass fiber reinforced epoxy hybrid laminates manufactured by vacuum assisted resin transfer molding (VARTM). The objective of this study was to develop and characterize carbon fiber reinforced plastic hybrid composite material that is low cost and light-weight and that possesses adequate strength and stiffness. The effect of position and content of the glass fabric layer on the tensile properties of the hybrid laminates was examined. The strength and stiffness of the hybrid laminates showed a steady decrease with an increase of the glass fabric content this decrease was almost linear. Fracture strain of these laminates showed a slight increasing trend when glass fabric content was increased up to 3 layers, but at a glass fabric content > 3 layers the strain was almost constant. When glass fabric layers were at both outer surfaces, the hybrid laminate exhibited a slightly higher tensile strength and elastic modulus due to the small amount of glass yarn pull-out.