• Title/Summary/Keyword: Glass Fabric

Search Result 153, Processing Time 0.028 seconds

A Study on the Design of Glass Fiber Fabric Reinforced Plastic Circuit Analog Radar Absorber Structure Using Machine Learning and Deep Learning Techniques (머신러닝 및 딥러닝 기법을 활용한 유리섬유 직물 강화 복합재 적층판형 Circuit Analog 전파 흡수구조 설계에 대한 연구)

  • Jae Cheol Oh;Seok Young Park;Jin Bong Kim;Hong Kyu Jang;Ji Hoon Kim;Woo-Kyoung Lee
    • Composites Research
    • /
    • v.36 no.2
    • /
    • pp.92-100
    • /
    • 2023
  • In this paper, a machine learning and deep learning model for the design of circuit analog (CA) radar absorbing structure with a cross-dipole pattern on a glass fiber fabric reinforced plastic is presented. The proposed model can directly calculate reflection loss in the Ku-band (12-18 GHz) without three-dimensional electromagnetic numerical analysis based on the geometry of the Cross-Dipole pattern. For this purpose, the optimal learning model was derived by applying various machine learning and deep learning techniques, and the results calculated by the learning model were compared with the electromagnetic wave absorption characteristics obtained by 3D electromagnetic wave numerical analysis to evaluate the comparative advantages of each model. Most of the implemented models showed similar calculated results to the numerical results, but it was found that the Fully-Connected model could provide the most similar calculated results.

Hydrophilic Finish of Polyester Fabrics using Sericin Finishing Agents (세리신 가공제에 의한 폴리에스터 직물의 친수화 가공)

  • Park, In-Woo;Hwang, Gye-Soon;Hong, Young-Ki;Bae, Han-Soo;Bae, Kie-Seo
    • Textile Coloration and Finishing
    • /
    • v.21 no.1
    • /
    • pp.38-45
    • /
    • 2009
  • First of all, the properties imparted to PET fabrics are resistance to and recovery from creasing or wrinkling when wet or dry; high resistance to stretch in the filament yarns but not in the staple; high abrasion resistance; good texture and appearance; resistance to heat ageing; good chemical resistance and good resistance, behind glass, to sunlight. But, the low moisture regain of PET fabric conduces to static troubles in textile processing. Furthermore, garments made from PET may, during wear, develop electric charges which attract to the fabric particles of soil(dirt, swarf, dust) flying in the air, so that the cuffs of shirts, for example, become soiled quickly and are not easily laundered clean. The sericin constitutes 25$\sim$30% of silk protein and surrounds the fibroin fiber with sticky layer that supports the formation of a cocoon. The useful biochemical properties of sericin protein are oxidation resistant, antibacterial, UV resistant, hydrophilic property, and good affinity with hydrophobic material. These properties can be used as an improving reagent or a coating agent for natural and synthetic fibers, fabrics, and other intermediate products. The sericin is also applied to cross-link, and can be blended with other materials. In this study, we modified the surface of PET fabric by mixture of sericin finishing agent; sericin, polyuretane binder and 1,2,3,4-butanetetracarboxylic acid (BTCA) cross-link agent. Also, we investigated the finshing effect; moisture regain, stiffness, handle, drape and electrostatic. The moisture regain of PET fabric treated with sericin finishing agent was higher than that of untreated PET fabric. As a result of evaluating influence about handle of PET fabrics treated with sericin finishing agent, it was confirmed that the sericin finishing agent could be use as a linen like finishing agent.

Effect of Unidirectional Carbon Fiber Sheet Manufacturing Process Using Coated Glass Fiber and Carbon Fiber on Concrete Reinforcement (유리섬유 코팅사와 탄소섬유를 이용한 일방향 탄소섬유시트 제조공정이 콘크리트 보강에 미치는 영향)

  • Kwon, Jieun;Kwon, Sunmin;Chae, Seehyeon;Jeong, Yedam;Kim, Jongwon
    • Textile Coloration and Finishing
    • /
    • v.34 no.3
    • /
    • pp.185-196
    • /
    • 2022
  • In this study, carbon fiber and coated glass fiber are applied to warp and weft fiber in order to reduce the amount of carbon fiber used in carbon fiber fabrics, which are often used for reinforcement of building structures. A low-cost thermoplastic resin was coated on glass fibers to prepare a shape-stabilizing glass fiber. A unidirectional carbon fiber sheet was manufactured using the prepared coated glass fiber and carbon fiber. In order to identify whether it can be used for reinforcing architectural and civil structures, it was attached to a concrete specimen and its mechanical properties were analyzed. The optimum manufacturing conditions for the coated glass fiber were 0.3 mm in diameter of the coating nozzle, the coating temperature was 190 ℃, and the coating speed was 0.3 m/s. 14 mm was optimal for the weft spacing of the coated glass fiber. The flexural strength of the concrete reinforced with the manufactured unidirectional carbon fiber sheet was slightly lower than that of the concrete reinforced with carbon fiber fabric, but it was confirmed that the reinforcement effect was better when the amount of carbon fiber was considered.

A Study of the Formative Characteristics of Future Materials in Fashion Industry

  • Lee, Young-Jae;Kim, Hee-Ra
    • International Journal of Costume and Fashion
    • /
    • v.6 no.2
    • /
    • pp.62-71
    • /
    • 2006
  • These days there are plenty of studies that predict a future with rapid technological development. The development of new technology also has greatly changed the fashion industry. Materials were developed with a variety of techniques, and recently as the exterior and property of materials have been brought into focus, regarding images as a trend of fashion. The purpose of this study is to consider the kinds and characteristics of diverse future materials developed by high technological advancement and to present a new course for future materials by analyzing the formative characteristics of future fashion with future materials. The methods of this work are an examination by reference to theoretical study about the conceptions of futurism in fashion and a visual analysis of the materials in picture data. Another topic of study was the positive source of future fashion that actually applies to these materials. The study makes an analysis of future characteristics expressed in modern fashion, looking at the background and developmental course of futurism. It considers the conception, types and characteristics of diverse new flexible materials such as metal, non-woven fabric, Styrofoam, rubber, glass fiber and polished fiber. With all of these works, we would like to express the course for the development of coming future fashion and the potential of an appropriate union between sensitivity and science.

The Effect of Fluorescent Whitening Agents on the Whiteness and the Shade of Fabrics in Repeated Washings (반복 세척시 형광증백제에 의한 증백효과와 색상변화)

  • 윤혜신;정혜원
    • Textile Coloration and Finishing
    • /
    • v.12 no.3
    • /
    • pp.192-198
    • /
    • 2000
  • Influence of the fluorescent whitening agent(FWA)'s adsorption on the whiteness of cotton and on the color change of the dyed fabrics was investigated by repeating wash cycles. Cotton 100% and cotton60/polyester40 blended fabrics were dyed pink, blue and yellow, and cyanuric chloride diamino stilbene(CC/DAS) and distyryl bisphenyl(DSBP) were used for the FWA with laundry detergents. Fabrics were washed at $20^\circ{C}$ with Terg-o-tometer. The FWA adsorption amount was measured by the absorption intensity for the pyridine-water extracted solution. The FWA adsorption increased on the cotton fabric with the wash cycles. Though adsorption of CC/DAS continuously increased up to the 20th cycle, that of DSBP increased sharply before the 10th cycle and reached an equilibrium. The whiteness of the fabrics dried in the shade was greater than that dried under the sunlight through window glass. The color change of dyed fabrics was increased by the number of wash cycles. Pink changed more greatly than blue, yellow or grey cloth. The color change(\Delta{E)}$ of dyed fabric washed repeatedly up to the 20th cycle with the detergent without FWA was less than 1. It is recommended to wash pale colored fabric with the detergent free of FWA.

  • PDF

Mechanical Properties and Failure Mechanism of the Polymer Composite with 3-Dimensionally Stitched Woven Fabric

  • Lee, Geon-Woong;Park, Joong-Sik;Lee, Sang-Soo;Park, Min;Kim, Junkyung;Choe, Chul-Rim;Soonho Lim
    • Macromolecular Research
    • /
    • v.11 no.2
    • /
    • pp.98-103
    • /
    • 2003
  • The mechanical properties and failure mechanisms of through-the-thickness stitched plain weave glass fabric/polyurethane foam/epoxy composites were studied. Hybrid composites were fabricated using resin infusion process (RIP). Stitched sandwich composite increased drastically the flexural properties as compared with the unstitched fabrics. The breaking of stitching yarns was observed during the flexural test and this failure mode yielded relatively high flexural properties. Composites with stitched sandwich structure improved the mechanical properties with increasing the number of stitching yarns. From this study, it was concluded that proper combination of stitching density and types of stitching fiber is important factor for through-the-thickness stitched composite panels.

Process and Health Monitoring of FBG Sensor Embedded 3-D Braid Fabric Reinforced Composite (FBG 센서를 삽입한 3차원 브레이드 섬유강화 복합재료의 성형공정 연구 및 비파괴 검사)

  • Jung Kyungho;Hahn Moon Heui;Yoon Yong Hoon;Kang Tae Jin
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.163-166
    • /
    • 2004
  • Epoxy composite reinforced with 3-D braided Glass/Aramid hybrid fabric was fabricated. FBG sensor was embedded along the braid yam in order to monitor the changes of the complicated inner region of the 3-D braid structure. The good linearity between Bragg wavelength and temperature was verified by several preliminary experiments. The strain inside 3-D braided beam was estimated using FBG sensor system, and the result was compared with the calculated value. It was found that FBG sensor system is very useful technique to investigate inside region of complicated structure.

  • PDF

Statistical Characteristics of Domestic Composite Material Prepregs (국산 복합재료 프리프레그 통계적 특성)

  • Kim, Jinwon;Lee, Hosung
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.1
    • /
    • pp.103-110
    • /
    • 2016
  • This study shows the statistical properties of the domestic composite material prepregs test result. During the last three years(2012.5~2015.6) the prepreg specimen tests have been performed by referring to NCAMP developed test procedure which was approved by FAA. The database of (1) Carbon Tape, (2) Glass Fabric, and (3) Carbon Fabric composite material prepregs' characteristics have been established for certified aircraft structures. This qualified materials can be used for aircraft structural design through proper material equivalency procedures.

Dynamic Crush Energy Absorption Characteristics of the Laminated Composite Box Tubes (섬유강화 복합재료 Box Tube의 동적 충격에너지 흡수거동)

  • Kang, S.C.;Jun, W.J.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.3
    • /
    • pp.118-126
    • /
    • 1993
  • Static and dynamic crushing behaviors of composite box tube show the difference with those of metal tube. This paper investigates the characteristics of static and dynamic crushing test which were conducted to characterize the energy absorption and collapse mode of composite box tubes. Sixteen kinds of tube specimens were fabricated from[0/90] woven Glass/Epoxy fabric and autoclave cured. Axial crushing tests were performed using Instron and Dynatup Impact Tester. It is shown that collapse mode and energy absorption capacity can vary according to the aspect ratio, length, loading rate, lay-up direction of fabric, and trigger geometry of the composite box tube.

  • PDF

Fabrication and Electromagnetic Characteristics of Electromagnetic Wave Absorbing Sandwich Structures (샌드위치 구조의 전자기파 흡수체 제작 및 전자기적 특성)

  • Park Ki-Yeon;Lee Sang-Eui;Han Jae-hung;Kim Chun-Gon;Lee In
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.131-134
    • /
    • 2004
  • The object of this study is to design the Radar Absorbing Structures (RAS) having sandwich structures in the X-band $(8.2\~12.4GHz)$ frequencies. Glass fabric/epoxy composites containing conductive carbon blacks and carbon fabric/epoxy composites were used for the face sheets. Polyurethane (PU) foams containing multi­walled carbon nanotube (MWNT) were used for the core. Their permittivities in the X-band were measured using the transmission line technique. The reflection loss characteristics for multi-layered sandwich structures were calculated using the theory of transmission and reflection in a multi-layered medium. Three kinds of specimens were fabricated and their reflection losses in the X-band were measured using the free space technique. Experimental results were in good agreements with simulated ones in 10dB absorbing bandwidth.

  • PDF