• Title/Summary/Keyword: Giseong Series

Search Result 2, Processing Time 0.024 seconds

A note on absence of Giseong Series and relation of Precambrian Pyeonghae Series and Wonnam Series of Pyeonghae-Uljin area (평해-울진 지역 선캠브리아기 기성통의 부재 및 평해통과 원남통의 관계에 대한 소고)

  • 김남훈;박계헌;송용선;강지훈
    • The Journal of the Petrological Society of Korea
    • /
    • v.11 no.3_4
    • /
    • pp.271-277
    • /
    • 2002
  • Pyeonghae Series, Giseong Series. Wonnam Series, Pyeonghae Unite gneiss, Hada leuco-granite gneiss are the Precambrian gneisses distributed in the north-eastern part of the Yeongnam massif. Even though there are no difference in lithologies between Pyeonghae and Wonnam Serieses. they have been regarded as different Serieses because of the presence of Giseong Series which has been considered meta-volcanics. However, field investigations reveal that the Giseong Series represents ductile shear zone having meta-volcanics-like appearances in some outcrops. The fact that both Pyeonghae and Wonnam Serieses experienced high grade metamorphism reaching upper amphibolite facies implies that any volcanics between these two Serieses should also occur as high-grade metamorphic rocks at present. The absence of Giseong Series as a low-grade meta-volcanics indicates the absence of logical base to distinguish Pyeonghae and Wonnam Serieses. Therefore, these two Serieses should be regarded as identical Series.

Development of a Novel 3-DOF Hybrid Robot with Enlarged Workspace (확장 작업업영역을 갖는 고속 3자유도 하이브리드 로봇 개발)

  • Jeong, Sung Hun;Kim, Giseong;Gwak, Gyeong Min;Kim, Han Sung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.5
    • /
    • pp.875-880
    • /
    • 2020
  • In this paper, a novel 3-DOF hybrid robot with enlarged workspace is presented for high speed applications. The 3-DOF hybrid robot is made up of one linear actuator and 2-DOF planar parallel robot in series. The actuation consists of one ball-screw to make one linear motion and two rotary ball-screws to transmit rotational motion to 2-DOF parallel robot. The workspace can be enlarged according to ball-screw stroke and the moving inertia can be reduced due to locating all the heavy actuators at the fixed base. The inverse kinematics and workspace analyses are presented. The robot prototype and PC-based control system are developed.