• Title/Summary/Keyword: Ginsenoside metabolites

Search Result 72, Processing Time 0.03 seconds

Inhibitory Effects of Ginsenoside Metabolites, Compound K and Protopanaxatriol, on $GABA_C$ Receptor-Mediated Ion Currents

  • Lee, Byung-Hwan;Hwang, Sung-Hee;Choi, Sun-Hye;Kim, Hyeon-Joong;Lee, Joon-Hee;Lee, Sang-Mok;Ahn, Yun Gyong;Nah, Seung-Yeol
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.2
    • /
    • pp.127-132
    • /
    • 2013
  • Ginsenosides, one of the active ingredients of Panax ginseng, show various pharmacological and physiological effects, and they are converted into compound K (CK) or protopanaxatriol (M4) by intestinal microorganisms. CK is a metabolite derived from protopanaxadiol (PD) ginsenosides, whereas M4 is a metabolite derived from protopanaxatriol (PT) ginsenosides. The ${\gamma}$-aminobutyric acid $receptor_C$ ($GABA_C$) is primarily expressed in retinal bipolar cells and several regions of the brain. However, little is known of the effects of ginsenoside metabolites on $GABA_C$ receptor channel activity. In the present study, we examined the effects of CK and M4 on the activity of human recombinant $GABA_C$ receptor (${\rho}$ 1) channels expressed in Xenopus oocytes by using a 2-electrode voltage clamp technique. In oocytes expressing $GABA_C$ receptor cRNA, we found that CK or M4 alone had no effect in oocytes. However, co-application of either CK or M4 with GABA inhibited the GABA-induced inward peak current ($I_{GABA}$). Interestingly, pre-application of M4 inhibited $I_{GABA}$ more potently than CK in a dose- dependent and reversible manner. The half-inhibitory concentration ($IC_{50}$) values of CK and M4 were $52.1{\pm}2.3$ and $45.7{\pm}3.9{\mu}M$, respectively. Inhibition of $I_{GABA}$ by CK and M4 was voltage-independent and non-competitive. This study implies that ginsenoside metabolites may regulate $GABA_C$ receptor channel activity in the brain, including in the eyes.

Metabolism of Ginsenosides to Bioactive Compounds by Intestinal Microflora and Its Industrial Application

  • Kim, Dong-Hyun
    • Journal of Ginseng Research
    • /
    • v.33 no.3
    • /
    • pp.165-176
    • /
    • 2009
  • Korean ginseng, which contains ginsenosides and polysaccharides as its main constituents, is orally administered to humans. Ginsenosides and polysaccharides are not easily absorbed by the body through the intestines due to their hydrophilicity. Therefore, these constituents which include ginsenosides Rb1, Rb2, and Rc, inevitably come into contact with intestinal microflora in the alimentary tract and can be metabolized by intestinal microflora. Since most of the metabolites such as compound K and protopanaxatriol are nonpolar compared to the parental components, these metabolites are easily absorbed from the gastrointestinal tract. The absorbed metabolites may express pharmacological actions, such as antitumor, antidiabetic, anti-inflammatory, anti-allergic, and neuroprotective effects. However, the activities that metabolize these constituents to bioactive compounds differ significantly between individuals because all individuals possess characteristic indigenous strains of intestinal bacteria. Recently, ginseng has been fermented with enzymes or microbes to develop ginsengs that contain these metabolites. However, before using these enzymes and probiotics, their safety and biotransforming activity should be assessed. Intestinal microflora play an important role in the pharmacological action of orally administered ginseng.

Enzymatic formation of compound-K from ginsenoside Rb1 by enzyme preparation from cultured mycelia of Armillaria mellea

  • Upadhyaya, Jitendra;Kim, Min-Ji;Kim, Young-Hoi;Ko, Sung-Ryong;Park, Hee-Won;Kim, Myung-Kon
    • Journal of Ginseng Research
    • /
    • v.40 no.2
    • /
    • pp.105-112
    • /
    • 2016
  • Background: Minor saponins or human intestinal bacterial metabolites, such as ginsenosides Rg3, F2, Rh2, and compound K, are more pharmacologically active than major saponins, such as ginsenosides Rb1, Rb2, and Rc. In this work, enzymatic hydrolysis of ginsenoside Rb1 was studied using enzyme preparations from cultured mycelia of mushrooms. Methods: Mycelia of Armillaria mellea, Ganoderma lucidum, Phellinus linteus, Elfvingia applanata, and Pleurotus ostreatus were cultivated in liquid media at $25^{\circ}C$ for 2 wk. Enzyme preparations from cultured mycelia of five mushrooms were obtained by mycelia separation from cultured broth, enzyme extraction, ammonium sulfate (30-80%) precipitation, dialysis, and freeze drying, respectively. The enzyme preparations were used for enzymatic hydrolysis of ginsenoside Rb1. Results: Among the mushrooms used in this study, the enzyme preparation from cultured mycelia of A. mellea (AMMEP) was found to convert ginsenoside Rb1 into compound K with a high yield, while those from G. lucidum, P. linteus, E. applanata, and P. ostreatus produced remarkable amounts of ginsenoside Rd from ginsenoside Rb1. The enzymatic hydrolysis pathway of ginsenoside Rb1 by AMMEP was $Rb1{\rightarrow}Rd{\rightarrow}F2{\rightarrow}$ compound K. The optimum reaction conditions for compound K formation from ginsenoside Rb1 were as follows: reaction time 72-96 h, pH 4.0-4.5, and temperature $45-55^{\circ}C$. Conclusion: AMMEP can be used to produce the human intestinal bacterial metabolite, compound K, from ginsenoside Rb1 with a high yield and without food safety issues.

Evaluation of Intestinal Immunity Activity by Steam-Heat Treatment and Fermentation of Lactic Acid Bacteria of Fruit and Vegetable Complex Extracts containing Red Ginseng (홍삼함유 과채류 복합 추출물의 증숙열처리 및 유산균 발효에 의한 장관면역 활성)

  • Kim, Hyun Kyoung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.6
    • /
    • pp.935-941
    • /
    • 2022
  • The purpose of this study was to investigate whether the activity of ginsenoside metabolites and the intestinal immunity antioxidant activity were remarkably improved by lactic acid bacteria fermentation by adding a small amount of ginsenoside to the complex extracts of fruits and vegetables. It was confirmed that the increase in intestinal immunity antioxidant activity due to synergistic effect was observed in the fruit-vegetable extract containing ginsenoside compared to the ginsenoside-only extract or the fruit-vegetable extract. Then, by adding ginsenosides by content, the concentration of ginsenosides that can obtain a synergistic effect according to the fermentation of lactic acid bacteria was determined. As a result, it was confirmed that a synergistic effect was exhibited when lactic acid bacteria were fermented and extracted by mixing ginsenosides in a mass ratio of 3 to 10% with respect to the mass of the fruit-vegetable mixture. As a result, when treated at a concentration of 200 ㎍/ml, the fruit-vegetable complex extract containing ginsenoside metabolites inhibited the generation of NO by about 60% compared to the complex extract containing no ginsenoside, The expression of IL-1β was suppressed by 63%, the expression of IL-6 by 69%, and the expression of TNF-α by 76%, confirming that the intestinal immune antioxidant properties were significantly improved.

Transformation Techniques for the Large Scale Production of Ginsenoside Rg3 (Ginsenoside Rg3의 함량증가를 위한 변환 기술)

  • Nam, Ki Yeul;Choi, Jae Eul;Park, Jong Dae
    • Korean Journal of Medicinal Crop Science
    • /
    • v.21 no.5
    • /
    • pp.401-414
    • /
    • 2013
  • Ginsenoside Rg3 (G-Rg3) contained only in red ginseng has been found to show various pharmacological effects such as an anticancer, antiangiogenetic, antimetastastic, liver protective, neuroprotective immunomodulating, vasorelaxative, antidiabetic, insulin secretion promoting and antioxidant activities. It is well known that G-Rg3 could be divided into 20(R)-Rg3 and 20(S)-Rg3 according to the hydroxyl group attached to C-20 of aglycone, whose structural characteristics show different pharmacological activities. It has been reported that G-Rg3 is metabolized to G-Rh2 and protopanaxadiol by the conditions of the gastric acid or intestinal bacteria, thereby these metabolites could be absorbed, suggesting its absolute bioavailability (2.63%) to be very low. Therefore, we reviewed the chemical, physical and biological transformation methods for the production on a large scale of G-Rg3 with various pharmacological effects. We also examined the influence of acid and heat treatment-induced potentials on for the preparation method of higher G-Rg3 content in ginseng and ginseng products. Futhermore, the microbial and enzymatic bio-conversion technologies could be more efficient in terms of high selectivity, efficiency and productivity. The present review discusses the available technologies for G-Rg3 production on a large scale using chemical and biological transformation.

Changes of Ginsenoside Content by Mushroom Mycelial Fermentation in Red Ginseng Extract

  • Bae, Song-Hwan;Lee, Hyun-Sun;Kim, Mi-Ryung;Kim, Sun-Young;Kim, Jin-Man;Suh, Hyung-Joo
    • Journal of Ginseng Research
    • /
    • v.35 no.2
    • /
    • pp.235-242
    • /
    • 2011
  • To obtain microorganisms for the microbial conversion of ginsenosides in red ginseng extract (RGE), mushroom mycelia were used for the fermentation of RGE. After fermentation, total sugar contents and polyohenol contents of the RGEs fermented with various mushrooms were not a significant increase between RGE and the ferments. But uronic acid content was relatively higher in the fermented RGEs cultured with Lentus edodes (2155.6 ${\mu}g/mL$), Phelllinus linteus (1690.9 ${\mu}g/mL$) and Inonotus obliquus 26137 and 26147 (1549.5 and 1670.7 ${\mu}g/mL$) compared to the RGE (1307.1 ${\mu}g/mL$). The RGEs fermented by Ph. linteus, Cordyceps militaris, and Grifola frondosa showed particularly high levels of total ginsenosides (20018.1, 17501.6, and 16267.0 ${\mu}g/mL$, respectively). The ferments with C. militaris (6974.2 ${\mu}g/mL$), Ph. linteus (9109.2 ${\mu}g/mL$), and G. frondosa (7023.0 ${\mu}g/mL$) also showed high levels of metabolites (sum of compound K, $Rh_1$, $Rg_5$, $Rk_1$, $Rg_3$, and $Rg_2$) compared to RGE (3615.9 ${\mu}g/mL$). Among four different RGE concentrations examined, a 20 brix concentration of RGE was favorable for the fermentation of Ph. linteus. Maximum biotransformation of ginsneoside metabolites (9395.5 ${\mu}g/mL$) was obtained after 5 days fermentation with Ph. linteus. Maximum mycelial growth of 2.6 mg/mL was achieved at 9 days, in which growth was not significantly different during 5 to 9 days fermentation. During fermentation of RGE by Ph. linteus in a 7 L fermenter, $Rg_3$, $Rg_5$, and $Rk_1$ contents showed maximum concentrations after 5 days similar to flask fermentation. These results confirm that fermentation with Ph. linteus is very useful for preparing minor ginsenoside metabolites while being safe for foods.

Isolation of Stenotrophomonas rhizopilae Strain GFC09 with Ginsenoside Converting Activity and Anti-wrinkle Effects of Converted Ginsenosides (사포닌 전환 활성 Stenotrophomonas rhizopilae Strain GFC09 균주의 분리 동정 및 전환 사포닌의 주름 개선 효과)

  • Min, Jin Woo;Kim, Hye-Jin;Joo, Kwang-Sik;Kang, Hee-Cheol
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.41 no.4
    • /
    • pp.375-382
    • /
    • 2015
  • Ginsenosides (ginseng saponin) as the one of important pharmaceutical compounds of ginseng and is responsible for the pharmacological and biological activities. These ginsenoside produces diverse small molecules ginsenoside which have more pharmacological activities including anti-wrinkle, anti-cancer and anti-oxidant effects. In the present study, we isolated bacteria using esculin agar, to produce ${\beta}$-glucosidase, and we focused on the bio-transformation of ginsenoside. Phylogenetic tree analysis was performed by comparing the 16S rRNA sequences; we identified the strain as Stenotrophomonas rhizopilae strain GFC09. In order to determine the optimal conditions for enzyme activity, the crude enzyme was incubated with 1 mM ginsenoside $Rb_1$. Bioconversion of ginsenoside $Rb_1$ were analyzed using TLC and HPLC. The crude enzyme hydrolyzed the ginsenoside $Rb_1$ along the following pathway: LB: $Rb_1{\rightarrow}Rd{\rightarrow}F_2$ into compound K, TSB: $Rb_1{\rightarrow}Rd{\rightarrow}F_2$. The structure of the hydrolyzed metabolites were identified by NMR. The activity screening tests showed that the conversion product induced the production of type I procollagen in a dose-dependent manner. These results suggested that hydrolyzed ginseng product containing the ginsenoside $F_2$ and compound K could be useful as an active ingredient for wrinkle-care cosmetics.

Quality Characteristics of Jelly Made from Fermented Red Ginseng Concentrate with Increased Ginsenoside Content by Enzyme Treatment

  • Kim, Hyo-Won
    • The Korean Journal of Food And Nutrition
    • /
    • v.33 no.4
    • /
    • pp.372-380
    • /
    • 2020
  • The purpose of this study is to investigate the physicochemical properties of jelly made from fermented red ginseng concentrate (FRGC) that can be easily absorbed and digested for the health promotion of the elderly. The pH of the jellies tended to decrease with increasing concentration of FRGC. Soluble solid content has significantly higher value when added more than 2%, and the water content of the sample was significantly lower when the FRGC was added 4%. As the amount of FRGC was increased, the total color difference increased, and the hardness of samples decreased significantly. On the other hand, the total ginsenoside contents of the FRGC was 45.50 mg/g. As the concentration of FRGC increased, the content of polyphenol and flavonoids increased. The increasing pattern of polyphenols and flavonoids showed a similar trend. As the content of FRGC increased, ABTS free radical scavenging activity significantly increased (p<0.05), and in the control, the minimum value (62.6 AEAC) and the 4% sample were highest (116.2 AEAC). DPPH radical scavenging activity was like that of ABTS radical scavenging activity. However, there was no significant difference in DPPH radical scavenging activity of 3% and 4% red ginseng jelly.

Endophytic Trichoderma citrinoviride isolated from mountain-cultivated ginseng (Panax ginseng) has great potential as a biocontrol agent against ginseng pathogens

  • Park, Young-Hwan;Mishra, Ratnesh Chandra;Yoon, Sunkyung;Kim, Hoki;Park, Changho;Seo, Sang-Tae;Bae, Hanhong
    • Journal of Ginseng Research
    • /
    • v.43 no.3
    • /
    • pp.408-420
    • /
    • 2019
  • Background: Ginseng (Panax ginseng Meyer) is an invaluable medicinal plant containing various bioactive metabolites (e.g., ginsenosides). Owing to its long cultivation period, ginseng is vulnerable to various biotic constraints. Biological control using endophytes is an important alternative to chemical control. Methods: In this study, endophytic Trichoderma citrinoviride PG87, isolated from mountain-cultivated ginseng, was evaluated for biocontrol activity against six major ginseng pathogens. T. citrinoviride exhibited antagonistic activity with mycoparasitism against all ginseng pathogens, with high endo-1,4-${\beta}$-D-glucanase activity. Results: T. citrinoviride inoculation significantly reduced the disease symptoms caused by Botrytis cinerea and Cylindrocarpon destructans and induced ginsenoside biosynthesis in ginseng plants. T. citrinoviride was formulated as dustable powder and granules. The formulated agents also exhibited significant biocontrol activity and induced ginsenosides production in the controlled environment and mountain area. Conclusion: Our results revealed that T. citrinoviride has great potential as a biological control agent and elicitor of ginsenoside production.