• Title/Summary/Keyword: Ginsenoside Rg4

Search Result 337, Processing Time 0.028 seconds

Seven New Ginsenosides From a New Processed Ginseng

  • Park, Jeong-Hill;Kim, Jong-Moon;Han, Sang-Beom;Kim, Na-Young;Lee, Seung-Ki;Kim, Nak-Doo;Park, Man-Ki;Han, Byung-Hoon
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1998.11a
    • /
    • pp.175-175
    • /
    • 1998
  • We reported a new processed ginseng with increased biological activities which is named as “sun ginseng (SG)”. Study on the saponin constituents of SG led to the isolation of seven new ginsenosides named as ginsenoside Rk$_1$, Rk$_2$, Rk$_3$, Rs$_4$, Rs$\_$5/, Rs$\_$6/ and Rs$\_$7/. Ginsenoside Rk$_1$, Rk$_2$ and Rk$_3$ were the Δ$\^$20(21),24(25)/-diene dammarane compounds, while ginsenoside Rs$_4$, Rs$\_$5/, Rs$\_$6/ and Rs$\_$7/ were mono-acetylated compounds. Many other ginsenosides which were reported as minor constituents of red ginseng were also isolated, which include 20(S)-Rg$_3$, 20(R)-Rg$_3$, Rg$\_$5/, Rg$\_$6/, F$_4$, Rh$_4$, 20(S)-Rs$_3$ and 20(R)-Rs$_3$. The major ginsenosides of SG were 20(S)-Rg$_3$, 20(R)-Rg$_3$, Rk$_1$ and Rg$\_$5/.

  • PDF

Ginsenoside Rg3 reduces the adhesion, invasion, and intracellular survival of Salmonella enterica serovar Typhimurium

  • Mechesso, Abraham F.;Quah, Yixian;Park, Seung-Chun
    • Journal of Ginseng Research
    • /
    • v.45 no.1
    • /
    • pp.75-85
    • /
    • 2021
  • Background: Invasive infections due to foodborne pathogens, including Salmonella enterica serovar Typhimurium, are prevalent and life-threatening. This study aimed to evaluate the effects of ginsenoside Rg3 (Rg3) on the adhesion, invasion, and intracellular survival of S. Typhimurium. Methods: The impacts of Rg3 on bacterial growth and host cell viability were determined using the time kill and the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assays, respectively. Gentamicin assay and confocal microscopic examination were undertaken to determine the effects of Rg3 on the adhesive and invasive abilities of S. Typhimurium to Caco-2 and RAW 264.7 cells. Quantitative reverse transcription polymerase chain reaction was performed to assess the expression of genes correlated with the adhesion, invasion, and virulence of S. Typhimurium. Results: Subinhibitory concentrations of Rg3 significantly reduced (p < 0.05) the adhesion, invasion, and intracellular survival of S. Typhimurium. Rg3 considerably reduced (p < 0.05) the bacterial motility as well as the release of nitrite from infected macrophages in a concentration-dependent manner. The expression of genes related to the adhesion, invasion, quorum sensing, and virulence of S. Typhimurium including cheY, hilA, OmpD, PrgK, rsgE, SdiA, and SipB was significantly reduced after Rg3 treatment. Besides, the compound downregulated rac-1 and Cdc-42 that are essential for actin remodeling and membrane ruffling, thereby facilitating Salmonella entry into host cells. This report is the first to describe the effects of Rg3 on "trigger" entry mechanism and intracellular survival S. Typhimurium. Conclusion: Rg3 could be considered as a supplement agent to prevent S. Typhimurium infection.

Protective effect and mechanism of ginsenoside Rg2 on atherosclerosis

  • Qianqian Xue;Tao Yu;Zhibin Wang;Xiuxiu Fu;Xiaoxin Li;Lu Zou;Min Li;Jae Youl Cho;Yanyan Yang
    • Journal of Ginseng Research
    • /
    • v.47 no.2
    • /
    • pp.237-245
    • /
    • 2023
  • Background: Ginsenoside Rg2 (Rg2) has a variety of pharmacological activities and provides benefits during inflammation, cancer, and other diseases. However, there are no reports about the relationship between Rg2 and atherosclerosis. Methods: We used 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) to detect the cell viability of Rg2 in vascular smooth muscle cells (VSMCs) and human umbilical vein endothelial cells (HUVECs). The expression of inflammatory factors in HUVECs and the expression of phenotypic transformation-related marker in VSMCs were detected at mRNA levels. Western blot method was used to detect the expression of inflammation pathways and the expression of phenotypic transformation at the protein levels. The rat carotid balloon injury model was performed to explore the effect of Rg2 on inflammation and phenotypic transformation in vivo. Results: Rg2 decreased the expression of inflammatory factors induced by lipopolysaccharide in HUVECs-without affecting cell viability. These events depend on the blocking regulation of NF-κB and p-ERK signaling pathway. In VSMCs, Rg2 can inhibit the proliferation, migration, and phenotypic transformation of VSMCs induced by platelet derived growth factor-BB (PDGF-BB)-which may contribute to its anti-atherosclerotic role. In rats with carotid balloon injury, Rg2 can reduce intimal proliferation after injury, regulate the inflammatory pathway to reduce inflammatory response, and also suppress the phenotypic transformation of VSMCs. Conclusion: These results suggest that Rg2 can exert its anti-atherosclerotic effect at the cellular level and animal level, which provides a more sufficient basis for ginseng as a functional dietary regulator.

Larqe guantity isolation of Ginsenoside $-Rb_1,\;-Rb_2,\;-Rc,\;-Rd,\;-Re\;and\;-Rg_1$ in Panax ginseng C.A. Meyer by High Performance Liquid Chromatography (고속액체(高速液體) chromatography에 의(依)한 Ginsenoside $-Rb_1,\;-Rb_2,\;-Rc,\;-Rd,\;-Re$$-Rg_1$의 대량분리(大量分離))

  • Choi, Jin-Ho;Kim, Woo-Jung;Bae, Hyo-Won;Oh, Sung-Ki;Oura, Hikokichi
    • Applied Biological Chemistry
    • /
    • v.23 no.4
    • /
    • pp.199-205
    • /
    • 1980
  • Relatively large quantity of the major components of saponin, $ginsenoside-Rb_1,\;-Rb_2,\;-Rc,\;-Rd,\;-Re\;and\;-Rg_1$ from Panax ginseng C.A. Meyer were isolated using preparative and semipreparative high performance liquid chromatography, and analyzed by analytical HPLC. The application of HPLC for isolation of ginsenosides was not only very effective for rapid analysis but also reduced the isolation time. The isolation capacity of pure ginsenosides was $30{\sim}50mg/hr$.

  • PDF

Saponin Contents of Root and Aerial Parts in Panax ginseng and Panax quinquefolium (고려인삼과 미국삼의 부위별 Saponin 함량)

  • Ahn, Sang-Deug;Choi, Kwang-Tae
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.29 no.4
    • /
    • pp.342-349
    • /
    • 1984
  • In order to obtain the basic information for the development of ginseng varieties with high saponin contents. saponin contents and ginsenosides of Panax ginseng (Korean ginseng) and Panax quinquefolium (American ginseng) grown under the same environmental conditions were analysed. Crude saponin contents of root and aerial parts were more in Panax quinquefolium than in Panax ginseng, and aerial parts had more saponin contents in comparison with a root. Protopanaxatriol saponin was greatly more in the aerial parts of ginseng while more amount of protopanaxadiol saponins were detected in the root. As for the ginsenosides, the patterns of ginsenosides detected in total saponin of the aerial parts were not different between two species, Panax ginseng and Panax quinquefolium, but the root ginsenoside patterns were quite different. Ginsenosides such as Rg$_2$, R$_{f}$. R$_{a}$ and R$_{o}$ were not detected in the root of Panax quinquefolium (American ginseng).).).).

  • PDF

Ginsenoside derivatives and quality characteristics of fermented ginseng using lactic acid bacteria (유산균을 이용한 발효인삼의 ginsenoside 유도체 및 품질특성)

  • Kang, Bok-Hee;Lee, Kun-Jae;Hur, Sang-Sun;Lee, Dong-Sun;Lee, Sang-Han;Shin, Ki-Sun;Lee, Jin-Man
    • Food Science and Preservation
    • /
    • v.20 no.4
    • /
    • pp.573-582
    • /
    • 2013
  • This study was done in order to investigate the bioconversion of ginsenoside, as well as the quality characteristics of fermented ginseng, by using lactic acid bacteria. Quality characteristics such as the thin layer chromatography(TLC) pattern, ginsenosides, total phenolic content, electron donating ability, and total sugar of fermenting ginseng and red ginseng were analyzed. The ginsenoside Rg2r, Rh2s and Rh2r of the fermented ginseng and red ginseng for 65 hours at a temperature of $37^{\circ}C$ were not detected. The ginsenoside Rg1 and Re contents have decreased, while the Rh1, Rg2s, Rd, Rg3r, and Rg3s have increased due to fermentation. The ginsenoside Rg3 of the fermented red ginseng has increased and the contents were $114.83{\sim}131.68{\mu}g/mL$ (control $104.56{\mu}g/mL$). The total phenolic content and electron donating ability of the red ginseng have totally decreased after 7 days of fermentation. The total phenolic contents of the fermented ginseng and red ginseng with different lactic acid bacteria did not show any tendency as different strains. The electron donating ability of the fermented ginseng has increased; however, the electron donating ability of the red ginseng has decreased. The total sugars of the fermented ginseng and red ginseng with different lactic acid bacteria have also decreased.

Ginsenoside Rg3-enriched red ginseng extract inhibits platelet activation and in vivo thrombus formation

  • Jeong, Dahye;Irfan, Muhammad;Kim, Sung-Dae;Kim, Suk;Oh, Jun-Hwan;Park, Chae-Kyu;Kim, Hyun-Kyoung;Rhee, Man Hee
    • Journal of Ginseng Research
    • /
    • v.41 no.4
    • /
    • pp.548-555
    • /
    • 2017
  • Background: Korean Red Ginseng has been used for several decades to treat many diseases, enhancing both immunity and physical strength. Previous studies have documented the therapeutic effects of ginseng, including its anticancer, antiaging, and anti-inflammatory activities. These activities are mediated by ginsenosides present in the ginseng plant. Ginsenoside Rg3, an effective compound from red ginseng, has been shown to have antiplatelet activity in addition to its anticancer and anti-inflammatory activities. Platelets are important for both primary hemostasis and the repair of the vessels after injury; however, they also play a crucial role in the development of acute coronary diseases. We prepared ginsenoside Rg3-enriched red ginseng extract (Rg3-RGE) to examine its role in platelet physiology. Methods: To examine the effect of Rg3-RGE on platelet activation in vitro, platelet aggregation, granule secretion, intracellular calcium ($[Ca^{2+}]_i$) mobilization, flow cytometry, and immunoblot analysis were carried out using rat platelets. To examine the effect of Rg3-RGE on platelet activation in vivo, a collagen plus epinephrine-induced acute pulmonary thromboembolism mouse model was used. Results: We found that Rg3-RGE significantly inhibited collagen-induced platelet aggregation and $[Ca^{2+}]_i$ mobilization in a dose-dependent manner in addition to reducing ATP release from collagen-stimulated platelets. Furthermore, using immunoblot analysis, we found that Rg3-RGE markedly suppressed mitogen-activated protein kinase phosphorylation (i.e., extracellular stimuli-responsive kinase, Jun N-terminal kinase, p38) as well as the PI3K (phosphatidylinositol 3 kinase)/Akt pathway. Moreover, Rg3-RGE effectively reduced collagen plus epinephrine-induced mortality in mice. Conclusion: These data suggest that ginsenoside Rg3-RGE could be potentially be used as an antiplatelet therapeutic agent against platelet-mediated cardiovascular disorders.

Effect of High Pressure and Steaming Extraction Processes on Ginsenosides Rg3 and Rh2 Contents of Cultured-Root in Wild Ginseng (Panax ginseng C. A. Meyer) (초고압 증숙처리가 산삼배양근의 진세노사이드 Rg3와 Rh2의 함량에 미치는 영향)

  • Choi, Woon-Yong;Lee, Choon-Geun;Seo, Yong-Chang;Song, Chi-Ho;Lim, Hye-Won;Lee, Hyeon-Yong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.20 no.4
    • /
    • pp.270-276
    • /
    • 2012
  • This study was performed to enhance contents of low molecular weight ginsenoside Rh2 and Rg3 using an ultra high pressure and steaming process in wild cultured-Root in wild ginseng. For selective increase in contents of Rg3 and Rh2 in cultured wild ginseng roots, an ultra high extraction was applied at 500MPa for 20 min which was followed by steaming process at $90^{\circ}C$ for 12 hr. It was revealed that contents of ginsenosides, Rb1, Rb2, Rc and Rd, were decreased with the complex process described above, whereas contents of ginsenoside Rh2 and Rg3 were increased up to 4.918 mg/g and 6.115 mg/g, respectively. In addition, concentration of benzo[${\alpha}$]pyrene in extracts of the cultured wild ginseng roots treated by the complex process was 0.64 ppm but it was 0.78 ppm when it was treated with the steaming process. From the results, it was strongly suggested that low molecular weight ginsenosides, Rh2 and Rg3, are converted from Rb1, Rb2, Rc, and Rd which are easily broken down by an ultra high pressure and steaming process. This results indicate that an ultra high pressure and steaming process can selectively increase in contents of Rg3 and Rh2 in cultured wild ginseng roots and this process might enhance the utilization and values of cultured wild ginseng roots.

Inhibition of Herpes Simplex Viruses, Types 1 and 2, by Ginsenoside 20(S)-Rg3

  • Wright, Stephen M.;Altman, Elliot
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.1
    • /
    • pp.101-108
    • /
    • 2020
  • Infections by herpes simplex viruses have an immense impact on humans, ranging from self-limiting, benign illness to serious, life-threatening diseases. While nucleoside analog drugs are available, resistance has been increasing and currently no vaccine exists. Ginsenosides derived from Panax ginseng have been documented to inhibit several viruses and bolster immune defenses. This study evaluated 12 of the most relevant ginsenosides from P. ginseng for toxicities and inhibition of herpes simplex viruses types 1 and 2 in Vero cells. The effects of test compounds and virus infection were determined using a PrestoBlue cell viability assay. Time course studies were also conducted to better understand at what points the virus life cycle was affected. Non-toxic concentrations of the ginsenosides were determined and ranged from 12.5 μM to greater than 100 μM. Ginsenoside 20(S)-Rg3 demonstrated the greatest inhibitory effect and was active against both HSV-1 and HSV-2 with an IC50 of approximately 35 μM. The most dramatic inhibition-over 100% compared to controls-occurred when the virus was exposed to 20(S)-Rg3 for 4 h prior to being added to cells. 20(S)-Rg3 holds promise as a potential chemotherapeutic agent against herpes simplex viruses and, when used together with valacyclovir, may prevent increased resistance to drugs.

인삼과 산양삼, 산삼의 HPLC를 이용한 부위별 성분 분석 비교

  • Han, Young-Ju;Kwon, Ki-Rok;Cha, Bae-Chun;Kwon, Oh-Man
    • Journal of Pharmacopuncture
    • /
    • v.10 no.1 s.22
    • /
    • pp.37-53
    • /
    • 2007
  • Objectives : The aim of this experiments is to provide an objective differentiation of ginseng, Korean and Chinese cultivated wild ginseng, and natural wild ginseng through components analysis of different parts of ginseng. Methods : Comparative analyses of ginsenoside-$Rg_3$, ginsenoside-$Rh_2$, and ginsenosides $Rb_1$ and $Rg_1$ from the root, stem, and leaves of ginseng, Korean and Chinese cultivated wild ginseng, and natural wild ginseng were conducted using HPLC. Results : 1. For content comparison of leaves, ginseng showed highest content of ginsenoside $Rg_1$ than other samples. Natural wild ginseng showed relatively high content of ginsenosides $Rg_1$ and $Rb_1$ than other samples. 2. For content comparison of the stem, ginseng and 10 years old Chinese cultivated wild ginseng didn't contain ginsenoside $Rb_1$. Natural wild ginseng showed higher content of ginsenosides $Rg_1$ and $Rb_1$ than other samples. 3. For content comparison of the root, ginsenoside $Rh_2$ was found only in 5 and 10 years old Korean cultivated wild ginseng. 4. Distribution of contents by the parts of ginseng was similar in ginseng and Chinese cultivated wild ginseng. Conclusions : Above experiment data can be an important indicator for the identification of ginseng, Korean and Chinese cultivated wild ginseng, and natural wild ginseng.