• Title/Summary/Keyword: Ginsenoside Rg3

Search Result 546, Processing Time 0.026 seconds

Neuroprotective Effects of Ginsenoside Rg3 against 24-OH-cholesterol-induced Cytotoxicity in Cortical Neurons

  • Roh, Yoon-Seok;Kim, Hyoung-Bae;Kang, Chang-Won;Kim, Bum-Seok;Nah, Seung-Yeol;Kim, Jong-Hoon
    • Journal of Ginseng Research
    • /
    • v.34 no.3
    • /
    • pp.246-253
    • /
    • 2010
  • Ginsenoside $Rg_3$ ($Rg_3$), one of the active ingredients in Panax ginseng, attenuates NMDA receptor-mediated currents in vitro and antagonizes NMDA receptors through a glycine modulatory site in rat cultured hippocampal neurons. In the present study, we examined the neuroprotective effects of $Rg_3$ on 24-hydroxycholesterol (24-OH-chol)-induced cytotoxicity in vitro. The results showed that $Rg_3$ treatment significantly and dose-dependently inhibited 24-OH-chol-induced cell death in rat cultured cortical neurons, with an $IC_{50}$ value of $28.7{\pm}7.5\;{\mu}m$. Furthermore, the $Rg_3$ treatment not only significantly reduced DNA damage, but also dose-dependently attenuated 24-OH-chol-induced caspase-3 activity. To study the mechanisms underlying the in vitro neuroprotective effects of $Rg_3$ against 25-OH-chol-induced cytotoxicity, we also examined the effect of $Rg_3$ on intracellular $Ca^{2+}$ elevations in cultured neurons and found that $Rg_3$ treatment dose-dependently inhibited increases in intracellular $Ca^{2+}$, with an $IC_{50}$ value of $40.37{\pm}12.88\;{\mu}m$. Additionally, $Rg_3$ treatment dose-dependently inhibited apoptosis with an $IC_{50}$ of $47.3{\pm}14.2\;{\mu}m$. Finally, after confirming the protective effect of $Rg_3$ using a terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assay, we found that $Rg_3$ is an active component in ginseng-mediated neuroprotection. These results collectively indicate that $Rg_3$-induced neuroprotection against 24-OH-chol in rat cortical neurons might be achieved via inhibition of a 24-OH-chol-mediated $Ca^{2+}$ channel. This is the first report to employ cortical neurons to study the neuroprotective effects of $Rg_3$ against 24-OH-chol. In conclusion, $Rg_3$ was effective for protecting cells against 24-OH-chol-induced cytotoxicity in rat cortical neurons. This protective ability makes $Rg_3$ a promising agent in pathologies implicating neurodegeneration such as apoptosis or neuronal cell death.

Effects of Black Ginseng (9 Times-Steaming Ginseng) on Hypoglycemic Action and Changes in the Composition of Ginsenosides on the Steaming Process (흑삼(구증구포인삼)이 혈당 강하에 미치는 영향 및 증포별 ginsenoside 조성 변화)

  • Kim, Suong-Nuen;Kang, Shin-Jyung
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.1
    • /
    • pp.77-81
    • /
    • 2009
  • This study examined the effects of black ginseng (9 times-steamed ginseng) on hypoglycemic action in streptozotocininduced diabetic rats as well as changes in ginsenoside composition by the steaming process. As the number of steaming cycles increased, the amounts of crude saponin and most ginsenoside contents decreased, while the amount of ginsenoside- Rg3 and the ratio of PD/PT (=[$Rb_1+Rb_2+Rc+Rd+Rg_3]/[Re+Rb_1+Rh_1]$) increased. This ginsenoside composition is a unique characteristic compared to other types of ginseng products. In order to investigate the hypoglycemic effect of the black ginseng extract, in vivo studies were performed in rats with streptozotocin-induced diabetes. The studies showed that the administration of the black ginseng extract decreased high blood glucose levels (more than 300 mg/dL) to a normal level (102 mg/dL). These results suggest that this black ginseng extract has a significant hypoglycemic effect and can be used as an anti-diabetic substance for dietary supplements or new drugs.

Antiarrhythmic effects of ginsenoside Rg2 on calcium chloride-induced arrhythmias without oral toxicity

  • Gou, Dongxia;Pei, Xuejing;Wang, Jiao;Wang, Yue;Hu, Chenxing;Song, Chengcheng;Cui, Sisi;Zhou, Yifa
    • Journal of Ginseng Research
    • /
    • v.44 no.5
    • /
    • pp.717-724
    • /
    • 2020
  • Background: Malignant arrhythmias require drug therapy. However, most of the currently available antiarrhythmic drugs have significant side effects. Ginsenoside Rg2 exhibits excellent cardioprotective effects and appears to be a promising candidate for cardiovascular drug development. So far, the oral toxicity and antiarrhythmic effects of Rg2 have not been evaluated. Methods: Acute oral toxicity of Rg2 was assessed by the Limit Test method in mice. Subchronic oral toxicity was determined by repeated dose 28-day toxicity study in rats. Antiarrhythmic activities of Rg2 were evaluated in calcium chloride-induced arrhythmic rats. Antiarrhythmic mechanism of Rg2 was investigated in arrhythmic rats and H9c2 cardiomyocytes. Results: The results of toxicity studies indicated that Rg2 exhibited no single-dose (10 g/kg) acute oral toxicity. And 28-day repeated dose treatment with Rg2 (1.75, 3.5 and 5 g/kg/d) demonstrated minimal, if any, subchronic toxicity. Serum biochemical examination showed that total cholesterol in the high-dose cohort was dramatically decreased, whereas prothrombin time was increased at Day 28, suggesting that Rg2 might regulate lipid metabolism and have a potential anticoagulant effect. Moreover, pretreatment with Rg2 showed antiarrhythmic effects on the rat model of calcium chloride induced arrhythmia, in terms of the reduced duration time, mortality, and incidence of malignant arrhythmias. The antiarrhythmic mechanism of Rg2 might be the inhibition of calcium influx through L-type calcium channels by suppressing the phosphorylation of Ca2+/calmodulin-dependent protein kinase II. Conclusion: Our findings support the development of Rg2 as a promising antiarrhythmic drug with fewer side effects for clinical use.

Ginsenoside Rg1 Improves In vitro-produced Embryo Quality by Increasing Glucose Uptake in Porcine Blastocysts

  • Kim, Seung-Hun;Choi, Kwang-Hwan;Lee, Dong-Kyung;Oh, Jong-Nam;Hwang, Jae Yeon;Park, Chi-Hun;Lee, Chang-Kyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.8
    • /
    • pp.1095-1101
    • /
    • 2016
  • Ginsenoside Rg1 is a natural compound with various efficacies and functions. It has beneficial effects on aging, diabetes, and immunity, as well as antioxidant and proliferative functions. However, its effect on porcine embryo development remains unknown. We investigated the effect of ginsenoside Rg1 on the in vitro development of preimplantation porcine embryos after parthenogenetic activation in high-oxygen conditions. Ginsenoside treatment did not affect cleavage or blastocyst formation rates, but did increase the total cell number and reduced the rate of apoptosis. In addition, it had no effect on the expression of four apoptosis-related genes (Bcl-2 homologous antagonist/killer, B-cell lymphoma-extra large, Caspase 3, and tumor protein p53) or two metabolism-related genes (mechanistic target of rapamycin, carnitine palmitoyltransferase 1B), but increased the expression of Glucose transporter 1 (GLUT1), indicating that it may increase glucose uptake. In summary, treatment with the appropriate concentration of ginsenoside Rg1 ($20{\mu}g/mL$) can increase glucose uptake, thereby improving the quality of embryos grown in high-oxygen conditions.

The pharmacological role of Ginsenoside Rg3 in liver diseases: A review on molecular mechanisms

  • Wenhong Wang;Ke Li;Weihua Xiao
    • Journal of Ginseng Research
    • /
    • v.48 no.2
    • /
    • pp.129-139
    • /
    • 2024
  • Liver diseases are a significant global health burden and are among the most common diseases. Ginssennoside Rg3 (Rg3), which is one of the most abundant ginsenosides, has been found to have significant preventive and therapeutic effects against various types of diseases with minimal side effects. Numerous studies have demonstrated the significant preventive and therapeutic effects of Rg3 on various liver diseases such as viral hepatitis, acute liver injury, nonalcoholic liver diseases (NAFLD), liver fibrosis and hepatocellular carcinoma (HCC). The underlying molecular mechanism behind these effects is attributed to apoptosis, autophagy, antioxidant, anti-inflammatory activities, and the regulation of multiple signaling pathways. This review provides a comprehensive description of the potential molecular mechanisms of Rg3 in the development of liver diseases. The article focuses on the regulation of apoptosis, oxidative stress, autophagy, inflammation, and other related factors. Additionally, the review discusses combination therapy and liver targeting strategy, which can accelerate the translation of Rg3 from bench to bedside. Overall, this article serves as a valuable reference for researchers and clinicians alike.

Cancer Chemopreventive Compounds of Red Ginseng Produced from panax ginseng C.A. Meyer (고려인삼으로 제조된 홍삼중의 화학적 암 예방성분)

  • Yun, Taik-Koo;Lee, Yun-Sil;Lee, You-Hui;Yun, Hyo-Yung
    • Journal of Ginseng Research
    • /
    • v.25 no.3
    • /
    • pp.107-111
    • /
    • 2001
  • Fresh Panax gineng C.A. cultivated in Korea(Korean red ginseng) was found to be ineffective as anticarcinogenic or cancer preventive in experimental animal model or in human case-control and cohort study. However, when treated with heat, the fresh ginseng, white ginseng were highly effective cancer preventives. Four compounds including 20(S)-ginsenoside Rh$_1$(Rh$_1$), 20(S)-ginsenoside Rh$_2$(Rh$_2$), 20(S)0-siwenoside Rg$_3$(Rg$_3$) and sinsenoside Rg$\sub$5/ were consequently purified from Korean red ginseng, and they were tested by Yun\`s 9 week medium-term anticarcinogenicity test model. Rg$_3$ and Rg$\sub$5/ statistically significantlydecreased the incidence of benzo(a)pyrene-induced mouse lung tumor, Rh$_2$showed tendency of decrease, and Rh1 showed no effect. It is, therefore, concluded that Rg$_3$ and Rg$\sub$5/ are active anticarcinogenic components in res ginseng and they either singularly or synergistically act in the prevention of cancer.

  • PDF

Seven New Ginsenosides From a New Processed Ginseng

  • Park, Jeong-Hill;Kim, Jong-Moon;Han, Sang-Beom;Kim, Na-Young;Lee, Seung-Ki;Kim, Nak-Doo;Park, Man-Ki;Han, Byung-Hoon
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1998.11a
    • /
    • pp.175-175
    • /
    • 1998
  • We reported a new processed ginseng with increased biological activities which is named as “sun ginseng (SG)”. Study on the saponin constituents of SG led to the isolation of seven new ginsenosides named as ginsenoside Rk$_1$, Rk$_2$, Rk$_3$, Rs$_4$, Rs$\_$5/, Rs$\_$6/ and Rs$\_$7/. Ginsenoside Rk$_1$, Rk$_2$ and Rk$_3$ were the Δ$\^$20(21),24(25)/-diene dammarane compounds, while ginsenoside Rs$_4$, Rs$\_$5/, Rs$\_$6/ and Rs$\_$7/ were mono-acetylated compounds. Many other ginsenosides which were reported as minor constituents of red ginseng were also isolated, which include 20(S)-Rg$_3$, 20(R)-Rg$_3$, Rg$\_$5/, Rg$\_$6/, F$_4$, Rh$_4$, 20(S)-Rs$_3$ and 20(R)-Rs$_3$. The major ginsenosides of SG were 20(S)-Rg$_3$, 20(R)-Rg$_3$, Rk$_1$ and Rg$\_$5/.

  • PDF

인삼과 산양삼, 산삼의 HPLC를 이용한 부위별 성분 분석 비교

  • Han, Young-Ju;Kwon, Ki-Rok;Cha, Bae-Chun;Kwon, Oh-Man
    • Journal of Pharmacopuncture
    • /
    • v.10 no.1 s.22
    • /
    • pp.37-53
    • /
    • 2007
  • Objectives : The aim of this experiments is to provide an objective differentiation of ginseng, Korean and Chinese cultivated wild ginseng, and natural wild ginseng through components analysis of different parts of ginseng. Methods : Comparative analyses of ginsenoside-$Rg_3$, ginsenoside-$Rh_2$, and ginsenosides $Rb_1$ and $Rg_1$ from the root, stem, and leaves of ginseng, Korean and Chinese cultivated wild ginseng, and natural wild ginseng were conducted using HPLC. Results : 1. For content comparison of leaves, ginseng showed highest content of ginsenoside $Rg_1$ than other samples. Natural wild ginseng showed relatively high content of ginsenosides $Rg_1$ and $Rb_1$ than other samples. 2. For content comparison of the stem, ginseng and 10 years old Chinese cultivated wild ginseng didn't contain ginsenoside $Rb_1$. Natural wild ginseng showed higher content of ginsenosides $Rg_1$ and $Rb_1$ than other samples. 3. For content comparison of the root, ginsenoside $Rh_2$ was found only in 5 and 10 years old Korean cultivated wild ginseng. 4. Distribution of contents by the parts of ginseng was similar in ginseng and Chinese cultivated wild ginseng. Conclusions : Above experiment data can be an important indicator for the identification of ginseng, Korean and Chinese cultivated wild ginseng, and natural wild ginseng.

Changes in the Contents of Prosapogenin in Ginseng Radix Palva (Panax ginseng) Depending on the Extracting Conditions (미삼의 추출 조건에 따른 인삼 프로사포게닌 성분 변화)

  • Lee, Sun-A;Jo, Hee-Kyung;Sung, Min-Chang;Cho, Soon-Hyun;Song, You-Chan;Im, Byung-Ok;Ko, Sung-Kwon
    • Korean Journal of Pharmacognosy
    • /
    • v.43 no.2
    • /
    • pp.152-156
    • /
    • 2012
  • This study compared the contents of ginseng prosapogenin depending on the extracting conditions of Ginseng Radix palva(Panax ginseng) to provide basic information for developing Ginseng Radix palva-based functional foods. Our findings show that the content of crude saponin peaked at 18 hours of extraction and when extracted twice at $100^{\circ}C$ (GRP-18). However, the content of total saponin reached its height at 6 hours of extraction at $100^{\circ}C$ (GRP-6) and when extracted twice. On the other hand, the content of ginsenoside $Rg_3$, $Rg_5$ and $Rk_1$ from Red and Black ginseng reached their heights at 18 hours of extraction, followed by 72 hours and 15 hours of extraction at $100^{\circ}C$. And at $100^{\circ}C$ the main prosapogenin of the content of Black ginseng ginsenoside $Rg_5$ and $Rk_1$ reached their heights at 18 hours of extraction, followed by 72 hours and 15 hours of extraction.

Effect of High Pressure and Steaming Extraction Processes on Ginsenosides Rg3 and Rh2 Contents of Cultured-Root in Wild Ginseng (Panax ginseng C. A. Meyer) (초고압 증숙처리가 산삼배양근의 진세노사이드 Rg3와 Rh2의 함량에 미치는 영향)

  • Choi, Woon-Yong;Lee, Choon-Geun;Seo, Yong-Chang;Song, Chi-Ho;Lim, Hye-Won;Lee, Hyeon-Yong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.20 no.4
    • /
    • pp.270-276
    • /
    • 2012
  • This study was performed to enhance contents of low molecular weight ginsenoside Rh2 and Rg3 using an ultra high pressure and steaming process in wild cultured-Root in wild ginseng. For selective increase in contents of Rg3 and Rh2 in cultured wild ginseng roots, an ultra high extraction was applied at 500MPa for 20 min which was followed by steaming process at $90^{\circ}C$ for 12 hr. It was revealed that contents of ginsenosides, Rb1, Rb2, Rc and Rd, were decreased with the complex process described above, whereas contents of ginsenoside Rh2 and Rg3 were increased up to 4.918 mg/g and 6.115 mg/g, respectively. In addition, concentration of benzo[${\alpha}$]pyrene in extracts of the cultured wild ginseng roots treated by the complex process was 0.64 ppm but it was 0.78 ppm when it was treated with the steaming process. From the results, it was strongly suggested that low molecular weight ginsenosides, Rh2 and Rg3, are converted from Rb1, Rb2, Rc, and Rd which are easily broken down by an ultra high pressure and steaming process. This results indicate that an ultra high pressure and steaming process can selectively increase in contents of Rg3 and Rh2 in cultured wild ginseng roots and this process might enhance the utilization and values of cultured wild ginseng roots.