• Title/Summary/Keyword: Ginsenoside Rg$_3$

Search Result 546, Processing Time 0.021 seconds

Anti-Metastasis Effects of Ginsenoside Rg3 in B16F10 Cells

  • Lee, Seul Gi;Kang, Young Jin;Nam, Ju-Ock
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.12
    • /
    • pp.1997-2006
    • /
    • 2015
  • Ginsenoside Rg3 is a bioactive ginseng constituent that has been reported to have diverse pathological and physiological effects, including anti-inflammatory and anti-metastatic activities. Metastasis is one of the most important factors involved in patients with melanoma. However, the molecular mechanism underlying the anti-metastatic activities of Rg3 in malignant melanoma cancer has not been fully elucidated. In this study, we have evaluated that Rg3 effectively inhibits metastasis of B16F10 melanoma cancer cells. We found that Rg3 significantly suppresses the migration, invasion, wound healing, and colony-forming abilities of B16F10 cells in a dose-dependent manner. Mechanistically, we demonstrate that Rg3 suppresses B16F10 cell metastasis by inhibiting MMP-13 expression. These results indicate that Rg3 suppresses the metastasis of B16F10 mouse melanoma cancer cells via MMP-13 regulation. Importantly, MMP-13 downregulation may influence the migration and invasion capabilities of melanoma cells and has been correlated with melanoma progression. Therefore, Rg3 is a potential therapeutic candidate that could be used to treat patients with metastatic melanoma.

A Study on the Amendment Scheme of Ginsenoside Content Standard Regulation for Red Ginseng Products in Korea (홍삼가공품의 Ginsenoside 함량 규격기준 개선방안 연구)

  • Kim, Ho Jin;Kwak, In Ae;Kim, Hyun Jung;Ahn, Jong Sung;Son, Young Bae
    • Journal of Food Hygiene and Safety
    • /
    • v.28 no.1
    • /
    • pp.24-30
    • /
    • 2013
  • Red ginseng is a widely used dietary supplement and medicinal herb, and there are so many forms of ginseng products including tea, extract, capsule and jelly. The purpose of the present study was to propose some amendments on ginsenoside content of red ginseng products in Korea. For this purpose, we analyzed red ginseng products for simultaneous determination of 26 ginsenosides by ultra performance liquid chromatography with diode array detector. Some developmental aspects of Korea's ginsenoside content standard regulations for red ginseng products are needed to be examined as follows : Firstly, we proposed that four ginsenosides ($Rb_1$, $Rg_1$, Rf and $Rg_3$) would be detected in red ginseng products. Secondly, in case of red ginseng extracts, the sum of $Rb_1$, $Rg_1$ and $Rg_3$ would be 4.0 mg/g. The two proposals are helpful to comprehensive evaluation of quality of red ginseng products. In conclusion, the scientific studies on amendment scheme of ginsenoside content standard regulation of red ginseng product are very important to fortify quality control.

Protective Effect of Fermented Red Ginseng on a Transient Focal Ischemic Rats

  • Bae, Eun-Ah;Hyun, Yang-Jin;Choo, Min-Kyung;Oh, Jin-Kyung;Ryu, Jong-Hoon;Kim, Dong-Hyun
    • Archives of Pharmacal Research
    • /
    • v.27 no.11
    • /
    • pp.1136-1140
    • /
    • 2004
  • Red ginseng and fermented red ginseng were prepared, and their composition of ginsenosides and antiischemic effect were investigated. When ginseng was steamed at 98-$100{\circ}C$ for 4h and dried for 5h at $60{\circ}C$, and extracted with alcohol, its main components were ginsenoside $Rg_3$ > ginsenoside $Rg_1$> ginsenoside $Rg_2$. When the ginseng was suspended in water and fermented for 5 days by previously cultured Bifidobacterium H-1 and freeze-dried (fermented red ginseng), its main components were compound K > ginsenoside $Rg_3{\geq}$ ginsenoside $Rg_2$. Orally administered red ginseng extract did not protect ischemia-reperfusion brain injury. However, fermented red ginseng significantly protected ischemica-reperfusion brain injury. These results suggest that ginsenoside Rh2 and compound K, which was found to be at a higher content in fermented red ginseng than red ginseng, may improve ischemic brain injury.

Ginsenoside $Rg_5$, A Genuine Dammarane Glycoside from Korean Red Ginseng

  • Kim, Shin-Il;Park, Jeong-Hill;Ryu, Jae-Ha;Park, Jong-Dae;Lee, You-Hui;Park, Jae-Hyun;Kim, Tae-Hee;Kim, Jong-Moon;Baek, Nam-In
    • Archives of Pharmacal Research
    • /
    • v.19 no.6
    • /
    • pp.551-553
    • /
    • 1996
  • A genuine dammarane glycoside, named ginsenoside $Rg_{5}$, has been isolated by repeated column chromatography and preparative HPLC from the MeOH extract of Korean red ginseng (Panax ginseng C.A. Meyer). The chemical structure of ginsenoside$ Rg_{5}$ was determined as $3-O-[{\beta}-D-glucopyranosyl (1{\rightarrow}2)-{\beta}-D-glucopyranosyl]$ dammar-20(22), $24-diene-3{\beta},12{\beta}-diol$ by spectral and chemical methods. The stereostructure of a double bond at C-20(22) of ginsenoside $Rg_{5}$ was characterized as (E) from the chemical shift of C-21 in the $^{13}C-NMR $and a NOESY experiment in the $^{1}H-NMR$.

  • PDF

Fermented red ginseng and ginsenoside Rd alleviate ovalbumin-induced allergic rhinitis in mice by suppressing IgE, interleukin-4, and interleukin-5 expression

  • Kim, Hye In;Kim, Jeon-Kyung;Kim, Jae-Young;Han, Myung Joo;Kim, Dong-Hyun
    • Journal of Ginseng Research
    • /
    • v.43 no.4
    • /
    • pp.635-644
    • /
    • 2019
  • Background: To increase the pharmacological effects of red ginseng (RG, the steamed root of Panax ginseng Meyer), RG products modified by heat process or fermentation have been developed. However, the antiallergic effects of RG and modified/fermented RG have not been simultaneously examined. Therefore, we examined the allergic rhinitis (AR)-inhibitory effects of water-extracted RG (wRG), 50% ethanol-extracted RG (eRG), and bifidobacteria-fermented eRG (fRG) in vivo. Methods: RBL-2H3 cells were stimulated with phorbol 12-myristate-13-acetate/A23187. Mice with AR were prepared by treatment with ovalbumin. Allergic markers IgE, tumor necrosis factor-${\alpha}$, interleukin (IL)-4, and IL-5 were assayed in the blood, bronchoalveolar lavage fluid, nasal mucosa, and colon using enzyme-linked immunosorbent assay. Mast cells, eosinophils, and Th2 cell populations were assayed using a flow cytometer. Results: RG products potently inhibited IL-4 expression in phorbol 12-myristate-13-acetate/A23187-stimulated RBL-2H3 cells. Of tested RG products, fRG most potently inhibited IL-4 expression. RG products also alleviated ovalbumin-induced AR in mice. Of these, fRG most potently reduced nasal allergy symptoms and blood IgE levels. fRG treatment also reduced IL-4 and IL-5 levels in bronchoalveolar lavage fluid, nasal mucosa, and reduced mast cells, eosinophils, and Th2 cell populations. Furthermore, treatment with fRG reduced IL-4, IL-5, and IL-13 levels in the colon and restored ovalbumin-suppressed Bacteroidetes and Actinobacteria populations and ovalbumin-induced Firmicutes population in gut microbiota. Treatment with ginsenoside Rd significantly alleviated ovalbumin-induced AR in mice. Conclusion: fRG and ginsenoside Rd may alleviate AR by suppressing IgE, IL-4, IL-5, and IL-13 expression and restoring the composition of gut microbiota.

Ginsenoside, Phenolic Acid Composition and Physiological Significances of Fermented Ginseng Leaf (발효처리가 인삼잎의 진세노사이드 및 페놀산 조성 변화와 생리활성에 미치는 영향)

  • Lee, Ka-Soon;Seong, Bong-Jae;Kim, Gwan-Hou;Kim, Sun-Ick;Han, Seung-Ho;Kim, Hyun-Ho;Baik, Nam-Doo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.8
    • /
    • pp.1194-1200
    • /
    • 2010
  • This study was carried out to investigate the compositional changes of ginsenosides and phenolic acids of ginseng leaf by fermentation in order to promote the utilization of ginseng leaf. The chief ginsenosides in non-fermented ginseng leaf (NFGL) were ginsenoside-Rg1 (26.0 mg/g), -Re (47.3 mg/g) and -Rd (23.9 mg/g). By fermentation, ginsenoside-Rg1, -Rb1, -Rb2, -Rb3, -Rc and -Re were decreased tremendously and new ginsenoside-Rh2, -Rh1, -Rg2 and -Rg3 appeared. Especially, ginsenoside-Rg3 (3.7 mg/g) on FGL was increased 15-fold compared to that of NFGL (0.2 mg/g). Total phenolic compound content of NFGL and FGL measured by colorimetric analysis was 350.4 and 312.5 mg%, respectively. There were 8 free and 6 ester forms of phenolic acids in NFGL. Among them, content of ferulic acid was the highest, comprised of 12.6 and 50.7 mg%, respectively. In FGL, total content of protocatechuic acid, p-hydroxybenzoic acid, and vanillic acid were increased by 28, 5 and 7.8 fold and ferulic acid was decreased greatly. Tyrosinase inhibitory activity of FGL was stronger than NFGL, while electron donating abilities of FGL were similar to NFGL.

Protective Effects of Ginsenoside Rg3 against Cholesterol Oxide-Induced Neurotoxicity in the Rat

  • Kim, Jong-Hoon
    • Journal of Ginseng Research
    • /
    • v.33 no.4
    • /
    • pp.294-304
    • /
    • 2009
  • Ginsenosides are among the most well-known traditional herbal medicines frequently used for the treatment of various symptoms in South Korea. The neuroprotective effects of ginsenoside $Rg_3$ (G-$Rg_3$) on cholesterol-oxide-(CO)-induced neurotoxicity were investigated through the analyses of rat brains. The recently accumulated reports show that ginseng saponins (GTS), the major active ingredients of Panax ginseng, have protective effects against neurotoxin insults. In the present study, the neuroprotective effects of G-$Rg_3$ on CO-induced hippocampal excitotoxicity were examined in vivo. The in-vitro studies using rat cultured hippocampal neurons revealed that G-$Rg_3$ treatment significantly inhibited CO-induced hippocampal cell death. G-$Rg_3$ treatment not only significantly reduced CO-induced DNA damage but also attenuated CO-induced apoptosis. The in-vivo studies that were conducted revealed that the intracerebroventricular (i.c.v.) pre-administration of G-$Rg_3$ significantly reduced i.c.v. CO-induced hippocampal damage in rats. To examine the mechanisms underlying the in-vitro and in-vivo neuroprotective effects of G-$Rg_3$ against CO-induced hippocampal excitotoxicity, the effect of G-$Rg_3$ on the CO-induced elevations of the apoptotic cells in cultured hippocampal cells was examined, and it was found that G-$Rg_3$ treatment inhibited CO-induced apoptosis. The histopathological evaluation demonstrated that G-$Rg_3$ significantly diminished the apoptosis in the hippocampus and also spared the hippocampal CA1, CA3, and dentate gyrus neurons. G-$Rg_3$ also significantly improved the CO-caused behavioral impairment. G-$Rg_3$ itself had no effect, however, on the CO-induced inhibition of succinate dehydrogenase activity (data not shown). These results collectively indicate the G-$Rg_3$-induced neuroprotection against CO in rat hippocampus. With regard to the wide use of G-$Rg_3$, this agent is potentially beneficial in treating CO-induced brain injury.

Changes in ginsenoside composition of ginseng berry extracts after a microwave and vinegar process

  • Kim, Shin-Jung;Kim, Ju-Duck;Ko, Sung-Kwon
    • Journal of Ginseng Research
    • /
    • v.37 no.3
    • /
    • pp.269-272
    • /
    • 2013
  • MGB-20 findings show that the ginseng berry extracts that had been processed with microwave and vinegar for 20 min peaked in the level of ginsenoside Rg2 (2.28%) and Rh1 (1.28%). MGB-1 peaked in the level of ginsenoside Rg3 (1.13%) in the ginseng berry extract processed with microwave and vinegar for 1 min.

Angiogenic effects of wood-cultivated ginseng extract and ginsenoside Rg5 in human umbilical vein endothelial cells (혈관내피세포에서 산양삼 추출물과 진세노사이드 Rg5의 혈관신생 효과)

  • Kim, Na-Eun;Lee, Mi-Ok;Jang, Mi-Hee;Chung, Byung-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.50 no.3
    • /
    • pp.349-355
    • /
    • 2018
  • Ginsenoside Rg5, one of the protopanaxadiol ginsenosides of wood-cultivated ginseng, has been implicated in various diseases, such as diabetes, cancer, and hypertension; however, its angiogenic activity and molecular mechanisms have not yet been elucidated. Here, we found that wood-cultivated ginseng extract and ginsenoside Rg5 increase in vitro proliferation, migration, and tube-like structure formation, which are typical phenomena associated with angiogenesis, in cultured human umbilical vein endothelial cells (HUVECs). Moreover, Ginsenoside Rg5 stimulated the phosphorylation of Akt, endothelial nitric oxide (NO) synthase (eNOS), and extracellular-regulated kinase (ERK)1/2, which are well-known signal mediators of the angiogenic pathway. Furthermore, Ginsenoside Rg5 did not accelerate the activation of ICAM-1 and VCAM-1 which are inflammatory response mediators. These results suggest that wood-cultivated ginseng extract and ginsenoside Rg5 stimulated in vitro angiogenesis by activating the Akt/eNOS- and ERK1/2-dependent signal pathways without inducing vascular inflammation.

The Changes of Ginsenoside Patterns in Red Ginseng Processed by Organic Acid Impregnation Pretreatment

  • Kim, Mi-Hyun;Lee, Young-Chul;Choi, Sang-Yoon;Cho, Chang-Won;Rho, Jeong-Hae;Lee, Kwang-Won
    • Journal of Ginseng Research
    • /
    • v.35 no.4
    • /
    • pp.497-503
    • /
    • 2011
  • In order to enhance bioactive functionalities of ginseng, an acid impregnation processing was applied as a pre-treatment in producing red ginseng. Acid impregnation studies were conducted, and acids (ascorbic, malic, and citric acid) were selected. The optimal concentration of each acid was investigated in this study in terms of ginsenoside contents. The most concerned ginsenoside, $Rg_3$ was increased by ascorbic, malic, and citric acid pre-treated red ginseng up to 1 M acid concentration. In the case of ascorbic acid pre-treated red ginseng, $Rg_2$ concentration was increased depending on acid concentrations. Citric acid pre-treatment enhanced $Rg_2$, $Rg_3$, and $Rh_1+Rh_2$ formation in red ginseng. Therefore, ginsenoside patterns in red ginseng could be changed by acid impregnation pre-treatment depending on acid concentration and acid types. This research is expected to contribute to the development of the ginseng industry via new red ginseng products with selective and intensified functionality.