• Title/Summary/Keyword: Ginsenoside Rc

Search Result 250, Processing Time 0.018 seconds

Comparing eight types of ginsenosides in ginseng of different plant ages and regions using RRLC-Q-TOF MS/MS

  • Dai, Yu-Lin;Qiao, Meng-Dan;Yu, Peng;Zheng, Fei;Yue, Hao;Liu, Shu-Ying
    • Journal of Ginseng Research
    • /
    • v.44 no.2
    • /
    • pp.205-214
    • /
    • 2020
  • Background: This article aims to compare and analyze the contents of ginsenosides in ginseng of different plant ages from different localities in China. Methods: In this study, 77 fresh ginseng samples aged 2-4 years were collected from 13 different cultivation regions in China. The content of eight ginsenosides (Rg3, Rc, Rg1, Rf, Rb2, Rb1, Re, and Rd) was determined using rapid resolution liquid chromatography coupled with quadrupole-time-of-flight tandem mass spectrometry (RRLC-Q-TOF MS/MS) to comparatively evaluate the influences of cultivation region and age. Results: Ginsenoside contents differed significantly depending on age and cultivation region. The contents of ginsenosides Re, Rc, Rg1, Rg3, and Rf increased with cultivation age, whereas that of ginsenoside Rb1 peaked in the third year of cultivation. Moreover, the highest ginsenoside content was obtained from Changbai (19.36 mg/g) whereas the lowest content was obtained from Jidong (12.05 mg/g). Ginseng from Jilin Province contained greater total ginsenosides and was richer in ginsenoside Re than ginseng of the same age group in Heilongjiang and Liaoning provinces, where Rb1 and Rg1 contents were relatively high. Conclusion: In this study, RRLC-Q-TOF MS/MS was used to analyze ginsenoside contents in 77 ginseng samples aged 2-4 years from different cultivation regions. These patterns of variation in ginsenoside content, which depend on harvesting location and age, could be useful for interested parties to choose ginseng products according to their needs.

Identification and quantification of major malonyl ginsenosides isolated from Panax ginseng C.A. Meyer (인삼(Panax ginseng C.A. Meyer)로부터 Malonyl ginsenoside의 분리 및 정량분석)

  • Shin, Woo Cheol;Jung, Jiyun;Na, Hyeon Seon;Bo, Jeon Hwang;Kim, Hyoung-Geun;Yoon, Dahye;Choi, Bo-Ram;Lee, Young-Seob;Kim, Geum-Soog;Baek, Nam-In;Lee, Yi;Lee, Dae Young
    • Journal of Applied Biological Chemistry
    • /
    • v.62 no.4
    • /
    • pp.375-384
    • /
    • 2019
  • The root of Panax ginseng C.A. Meyer were extracted with 70% aqueous EtOH and the concentrates were partitioned into MeOH and H2O fractions using Diaion HP-20. The repeated SiO2 or octadecyl SiO2 column, and MPLC for the MeOH fraction led to isolation of four malonyl ginsenosides. The chemical structures of these compounds were determined as malonyl ginsenoside Rd (1) malonyl ginsenoside Rc (2) malonyl ginsenoside Rb2 (3) malonyl ginsenoside Rb1 (4) based on spectroscopic analyses including Nuclear magnetic resonance and HR-TOF/MS. The contents of malonyl ginsenoside Rb1 was highist as 5.44 mg/g of five years of ginseng. And malonyl ginsenoside Rd was lowest as 0.11 mg/g of six years of ginseng. Additionally, the malonyl ginsenoside Rd exhibited hepatoprotective effect against ethanol-induced hepatotoxicity in HepG2 cell line.

Monitoring of Extraction Characteristics and Comparison of Extraction Efficiencies for Ginsenosides in the Microwave-Assisted Process Under Pressure (가압조건의 마이크로웨이브 추출에서 Ginsenosides의 추출특성 모니터링과 추출효율 비교)

  • Lee Sae-Bom;Lee Gee-Dong;Kwon Joong-Ho
    • Journal of Ginseng Research
    • /
    • v.23 no.3 s.55
    • /
    • pp.164-171
    • /
    • 1999
  • Microwave-assisted extraction, which is known to rapidly extract target compounds from natural products, was monitored by response surface methodology (RSM) while extracting ginsenosides by using microwave extraction system (MES) equipped with closed vessels, and was confirmed on its extraction efficiency. On the whole, coefficients of determinations $(R^2)$ of the models on ginsenoside contents of extracts with various extraction conditions were above 0.83 (p<0.1). $Ginsenoside-Rb_2,\;-Rc,\;-Re\;and\;-Rg_1$ were maximized in $140^{\circ}C$ of extraction temperature and $50\~75\%$ range of ethanol concentration. Unknown compound peak on HPLC chromatogram observed at extraction temperature over $120^{\circ}C$, increased at the extraction temperature of $150^{\circ}C$. The extraction temperature of $ginsenoside-Rb_2$ and -Re increased from $129^{\circ}C\;to\;147^{\circ}C$ with including unknown compound, and $R^2$ of the models on ginsenoside contents of extracts increased with including unknown compound into ginsenoside $Rb_2$ and Re. Contents of unknown compound were minimized in $67.33\%$ of ethanol concentration, $99.34^{\circ}C$ of extraction temperature and 3.65 min of extraction time. Ginsenoside contents extracted by microwave system for 8 min showed a similar tendency to those of the current extraction method for 40 hrs.

  • PDF

Effect of Processing Methods on the Saponin Contents of Panax ginseng Leaf-Tea (고려인삼엽차의 제조방법에 따른 사포닌 성분의 함량 및 조성)

  • 장현기
    • The Korean Journal of Food And Nutrition
    • /
    • v.16 no.1
    • /
    • pp.46-53
    • /
    • 2003
  • Panax ginseng leaf tea was developed for the functional benefit of health, preference and convenience. The leaves of 4-year-old ginseng were selected in July and August. The ginseng leaf was treated by three methods : heat processed tea(HPT), aged tea(AGT) and hot-air dried tea(DRT). The contents and compositions of their crude saponin of ginseng leaves were measured. 1. The content of crude saponin of HPT was the higher than other treatments. The content of HPT was 18.72∼18.82%, ACT 18.24∼18.29% and DRT 17.02∼17.17%. 2. The harvest time and treatment methods were not affect the composition of ginsenoside in ginseng leaf tea. The ginsenoside-Re was shown the highest value as 1.97∼2.15. And ginsenoside-Rd was 1.48∼1.79, -Rg$_1$ 1.33∼1.58 and -Rb, -Rb$_2$, -Rc in the order. 3. The content of protopanaxadiol(PD) and protopanaxatriol(PT) was shown that DRT was 1.11∼1.13, HPT 1.09~l.12 and AGT 0.92∼1.02. The content of PD and PT were shown similar result at any harvest time. 4. The contents of crude saponin extracted by hot-water at 5 min was the higher ratios in HPT and harvested in July than other treatments. The content of crude saponin of ginseng leaf harvested in July was 15.88% and HPT was 16.88%. The order of contents of ginsenoside were -Re, -Rd, -Rg$_1$, -Rb$_1$, -Rb$_2$, and - Rc. The extraction ratio of crude saponin extracted by the circulated extraction method in 8 hours and 5 min extraction were 81.74∼84.38%. And HPT of ginseng leaf harvested in July was the highest value 84.3% but the extraction ratio of ginsenoside was 78.00~88.13%. But the extraction ratio of ginsenoside was similar trend in all treatments.

Comparison of Ginsenoside Contents in Different Parts of Korean Ginseng (Panax ginseng C.A. Meyer)

  • Kang, Ok-Ju;Kim, Ji-Sang
    • Preventive Nutrition and Food Science
    • /
    • v.21 no.4
    • /
    • pp.389-392
    • /
    • 2016
  • The present study was conducted to investigate the ginsenoside profiles of the main root, root hair, and leaf of ginseng in order to demonstrate their possible application in medicine. The total ginsenoside content of the leaf was up to 12 times than that in the main root, and the content of protopanaxadiol groups was higher than that of protopanaxatriol groups in all the samples. The leaf was shown to contain high amounts of ginsenosides Rb3 and Rh1, whereas the main root contained large amounts of ginsenosides Rb1 and Rc. Moreover, Rb2, Rb3, and Rg1 were only detected in the root hair, leaf, and main root, respectively. The ginsenoside Re content of Panax ginseng leaf and root hair was 2.6~4 times higher than that of the main root. Therefore, the results indicate that the ginsenoside content of Panax ginseng is higher in the leaf and root hair, and lower in the main root.

CHEMICAL STUDIES ON CRUDE DRUG PROCESSING RED GINSENG AND WHITE GINSENG (생약에 관한 화학구조-홍삼 및 백삼-)

  • Kitagawa Isao
    • Proceedings of the Ginseng society Conference
    • /
    • 1984.09a
    • /
    • pp.159-168
    • /
    • 1984
  • 생약의 화학적 특성에 대한 계속적인 연구가 이루어짐에 따라 우리는 홍삼 및 백삼의 화학성분을 상대적으로 규명하였다. 홍삼은 극성이 약한 분획에서 5개의 새로운 배당체(20R-ginsenoside $Rg_{2},\;Rh_{1};20R$, 20S-ginsenoside $Rg_{3}; ginsenoside\;Rh_{2}$와 새로운 아세칠렌 화합물(Panaxytriol)을 함유하는 특징적인 성분들이 gins - enoside Rh1, Rg2와 함께 분리되었다. ginsenoside Rh2는 배양된 종양세포에 대해 세포독소 효과를 보여주었다. 백삼은 수용성 분획에서 특징적인 성분이 있는 것으로 밝혀졌으며, 여기에서 malonly-ginsenosides Rb1, Rb2, Rc 및 Rd로 명명된 새로운 배당체 성분이 분리되었다. Malona-ginsenosides는 백삼에서는 주요한 배당체이지만, 홍삼에서는 검출되지 않았다.

  • PDF

The Effects of Ginseng Saponin-Re, Re and Green Tea Catechine; ECGC (Epigallocatechin Gallate) on Leptin, Hormone Sensitive Lipase and Resistin mRNA Expressions in 3T3-L1 Adipocytes (3T3-L1 Adipocyte에 인삼 사포닌과 EGCG (Epigallocatechin Gallate)처리가 Leptin, Hormone Sensitive Lipase, Resistin mRNA- 발현에 미치는 영향)

  • Kim, Sung-Ok;LeeH, Eun-Joo;Choe, Won-Kyung
    • Journal of Nutrition and Health
    • /
    • v.39 no.8
    • /
    • pp.748-755
    • /
    • 2006
  • The purpose of this study was to find out effects of treatment of ginsenoside Re, Rc and EGCG on mRNA expressions of leptin, hormone sensitive lipase (HSL) and resistin in 3T3-L1 adipocytes. The concentrations of EGCG were treated with $0.01{\times}10^{-7},\;0.1{\times}10^{-7},\;1{\times}10^{-7}\;and\;1{\times}10^{-6}\;or\;100{\mu}g/ml$ ginsenoside Re, Rc in culture cell for 13 days. mRNA expression of leptin wasn't expressed in preadipocyte but according to differentiation of adipocyte, the that of mRNA expression was decreased at gensenosids or EGCG treated cells compared with non treated adipocyte. Expression of HSL mRNA was increased in G-Re, G-Rc and EGCG treated cells compared with non treated cells. The resistin level was significantly decreased in adipocytes treated with G-Re, G-Rc and EGCG. These pattern was similar to leptin expression. These results support that treatment of gensenosides or EGCG in 3T3-L1 adipocyte resulted to affect of leptin and resistin as well as HSL mRNA levels, accordingly, levels of leptin and HSL will be acted by signalling body fat stores to the hypothalamus which in turn regulates food intake andenergy expenditure to maintain body weight homeostasis. And also regulation of resistin mRNA will prevent to diabetics attacked with obesity. In conclusion, we suggest that consumption of ginseng saponine or EGCG might prevent human diabetics or/and obesity.

Development and Verification of New Ginseng Processing Methods (가공방법을 달리한 홍삼의 품질 특성)

  • Ye Eun-Ju;Kim Soo-Jung;Park Chang-Ho;Gwakg Hee-Boo;Beal Man-Jong
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.15 no.4
    • /
    • pp.413-418
    • /
    • 2005
  • This study was performed to develop new processing methods and products from steamed ginseng with rice wine. The brownnes, turbidity and the total ginsenoside in ginseng were examined All the values of examined premonitory materials, intermediate products, coloring matters and turbidity were increased as the steaming continued The quantity of total ginsenoside was increased when the steaming with rice wine continued in A1 - A9($1^{st}$ traditional rice wine steamed red ginseng: $A1{\~}9^{th}$ traditional rice wine steamed-red ginseng:A9). The quantity of ginsenoside-Rc, ginsenoside-Rd, ginsenoside-Re in Al were increased as the steaming continued. The quantity of ginsenoside-$Rg_2$ and ginsenoside-$Rg_3$ was increased when the number of steaming increased.

  • PDF

Effects of Minor Ginsenosides, Ginsenoside Metabolites, and Ginsenoside Epimers on the Growth of Caenorhabditis elegans

  • Lee, Joon-Hee;Ahn, Ji-Yun;Shin, Tae-Joon;Choi, Sun-Hye;Lee, Byung-Hwan;Hwang, Sung-Hee;Kang, Ji-Yeon;Kim, Hyeon-Joong;Park, Chan-Woo;Nah, Seung-Yeol
    • Journal of Ginseng Research
    • /
    • v.35 no.3
    • /
    • pp.375-383
    • /
    • 2011
  • In the previous report, we have demonstrated that ginsenoside Rc, one of major ginsenosides, is a major component for the restoration for normal growth of worms in cholesterol-deprived medium. In the present study, we further investigated the roles of minor ginsenosides, such as ginsenoside $Rh_1$ and $Rh_2$, ginsenoside metabolites such as compound K (CK), protopanaxadiol (PPD), and protopanaxatriol (PPT) and ginsenoside epimers such as 20(R)- and 20(S)-ginsenoside $Rg_3$ in cholesterol-deprived medium. We found that ginsenoside $Rh_1$ almost restored normal growth of worms in cholesterol-deprived medium in F1 generation. However, supplement of ginsenoside $Rh_2$ caused a suppression of worm growths in cholesterol-deprived medium. In addition, CK and PPD also slightly restored normal growth of worms in cholesterol-deprived medium but PPT not. In experiments using ginsenoside epimers, supplement of 20(S)- but not 20(R)-ginsenoside $Rg_3$ in cholesterol-deprived medium also almost restored worm growth. These results indicate that the absence or presence of carbohydrate component at backbone of ginsenoside, the number of carbohydrate attached at carbon-3, and the position of hydroxyl group at carbon-20 of ginsenoside might plays important roles in restoration of worm growth in cholesterol-deprived medium.

Transformation of Ginseng Saponins to Ginsenoside $Rh_2$ by Acids and Human Intestinal Bacteria Activities of Their Transformants

  • Bae, Eun-Ah;Han, Myung-Joo;Kim, Eun-Jin;Kim, Dong-Hyun
    • Archives of Pharmacal Research
    • /
    • v.27 no.1
    • /
    • pp.61-67
    • /
    • 2004
  • When ginseng water extract was incubated at $60^{\circ}C$ in acidic conditions, its protopanaxadiol ginsenosides were transformed to ginsenoside $Rg_3$ and ${\Delta}^{20}$-ginsenoside $Rg_3$. However, protopanaxadiol glycoside ginsenosides $Rb_1, Rb_2$ and Rc isolated from ginseng were mostly not transformed to ginsenoside $Rg_3$ by the incubation in neutral condition. The transformation of these ginsenosides to ginsenoside $Rg_3$ and ${\Delta}^{20}$-ginsenoside $Rg_3$ was increased by increasing incubation temperature and time in acidic condition: the optimal incubation time and temperature for this transformation was 5 h and $60^{\circ}C$ resepectively. The transformed ginsenoside $Rg_3$ and ${\Delta}^{20}$-ginsenoside $Rg_3$ were metabolized to ginsenoside $Rh_2$ and $\Delta^{20}$--ginsenoside $Rh_2$, respectively, by human fecal microflora. Among the bacteria isolated from human fecal microflora, Bacteroides sp., and Bifidobacterium sp. and Fusobacterium sp. potently transformed ginsenoside $Rg_3$ to ginsenoside $Rh_2$. Acid-treated ginseng (AG) extract, fermented AG extract, ginsenoside $Rh_2$ and protopanaxadiol showed potent cytotoxicity against tumor cell lines. AG extract, fermented AG extract and protopanaxadiol potently inhibited the growth of Helicobacter pylori.