• Title/Summary/Keyword: Ginsenoside Rb$_1$

Search Result 531, Processing Time 0.028 seconds

Compound K improves skin barrier function by increasing SPINK5 expression

  • Park, No-June;Bong, Sim-Kyu;Lee, Sullim;Jung, Yujung;Jegal, Hyun;Kim, Jinchul;Kim, Si-Kwan;Kim, Yong Kee;Kim, Su-Nam
    • Journal of Ginseng Research
    • /
    • v.44 no.6
    • /
    • pp.799-807
    • /
    • 2020
  • Background: The skin acts as a barrier to protect organisms against harmful exogenous agents. Compound K (CK) is an active metabolite of ginsenoside Rb1, Rb2 and Rc, and researchers have focused on its skin protective efficacy. In this study, we hypothesized that increased expression of the serine protease inhibitor Kazal type-5 (SPINK5) may improve skin barrier function. Methods: We screened several ginsenosides to increase SPINK5 gene promoter activity using a transactivation assay and found that CK can increase SPINK5 expression. To investigate the protective effect of CK on the skin barrier, RT-PCR and Western blotting were performed to investigate the expression levels of SPINK5, kallikrein 5 (KLK5), KLK7 and PAR2 in UVB-irradiated HaCaT cells. Measurement of transepidermal water loss (TEWL) and histological changes associated with the skin barrier were performed in a UVB-irradiated mouse model and a 1-chloro-2,4-dinitrobenzene (DNCB)-induced atopic dermatitis-like model. Results: CK treatment increased the expression of SPINK5 and decreased the expression of its downstream genes, such as KLKs and PAR2. In the UVB-irradiated mouse model and the DNCB-induced atopic dermatitis model, CK restored increased TEWL and decreased hydration and epidermal hyperplasia. In addition, CK normalized the reduced SPINK5 expression caused by UVB or DNCB, thereby restoring the expression of the proteins involved in desquamation to a level similar to normal. Conclusions: Our data showed that CK contributes to improving skin-barrier function in UVB-irradiated and DNCB-induced atopic dermatitis-like models through SPINK5. These results suggest that therapeutic attempts with CK might be useful in treating barrier-disrupted diseases.

Hepatoprotective Effects of Ginseng Intestinal Metabolite IH-901 on Chemical-Induced Hepatic Damage

  • Sohn, Uy-Dong;Ko, Sung-Kwon;Choi, Tae-Sik;Im, Byung-Ok ;Han, Sung-Tai;Yang, Byung-Wook;Sung, Jong-Hwan;Kim, Yong-Sung;Woo, Jae-Gwang;Cho, Young-Rae;Min, Young-Sil;Jeong, Ji-Hoon;Lee, Boo-Yong
    • Food Science and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.558-560
    • /
    • 2005
  • Hepatoprotective effects of white ginseng extract (WGE), and IH-901 (20-O-${\beta}$-D-glucopyranosyl-20(S)-protopanaxadiol) derived from intestinal metabolite of ginsenoside $Rb_1$ were studied using two experimental animal models with chemical-induced hepatic damage. Administration of WGE (200 and 500 mg/kg) and IH-901 (0.01, 0.05, and 0.1 mM/kg) significantly decreased aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels in acute hepatitic mice induced by $CCl_4$. Administration of WGE (l00 mg/kg) and IH-901 (0.02, 0.04, and 0.08 mM/kg) significantly decreased AST and ALT levels in acute hepatitic rats induced by D-galactosamine. AST and ALT levels of IH-901 groups decreased. These results suggested WGE and IH-901 may have protective effects against chemical-induced hepatic damage.

Antidepressant Effect of the Subchronic Administration of the Methanolic Extract of Wild-ginseng and Cultivated-ginseng in Mice Tail Suspension Test (산삼과 인삼 메탄올 추출물 아만성 복용의 Mice Tail Suspension Test에서의 항우울 효과에 대한 비교연구)

  • Kwon, Sun-Oh;Choi, Soo-Min;Kim, Myung-Hwan;Lee, Bom-Bi;Park, Moo-Won;Lee, Hye-Jung;Park, Hi-Joon;Hahm, Dae-Hyun
    • Journal of Acupuncture Research
    • /
    • v.26 no.4
    • /
    • pp.99-106
    • /
    • 2009
  • Objectives : The antidepressant effect of the subchronic administration of the methanolic extract of wild ginseng(WG) was investigated compared with that of cultivated ginseng(CG, panax ginseng) extract. Methods : To assess the antidepressant effect of the ginseng extracts, tail suspension test(TST) was executed in mice after daily administration of WG or CG extract for five consecutive days. Results : The WG extract at daily dose of 600mg/kg significantly reduced the total duration of immobility in the TST, whereas there was no significant reduction at daily dose of 300mg/kg WG and 600mg/kg CG. There were no individual differences between experimental groups in open field test (OFT) to evaluate psychostimulant effects of WG or CG extract. In the high performance liquid chromatography(HPLC) analysis of the extracts, it was found that WG included four times more ginsenoside Rg1 and Re, three times more Rf, and six times more Rb1 and Rc than CG. Conclusions : It is suggested that WG extract has stronger antidepressant effect than CG extract, which means it includes more antidepressant compounds than CG.

  • PDF

Cold-induced ginsenosides accumulation is associated with the alteration in DNA methylation and relative gene expression in perennial American ginseng (Panax quinquefolius L.) along with its plant growth and development process

  • Hao, Mengzhen;Zhou, Yuhang;Zhou, Jinhui;Zhang, Min;Yan, Kangjiao;Jiang, Sheng;Wang, Wenshui;Peng, Xiaoping;Zhou, San
    • Journal of Ginseng Research
    • /
    • v.44 no.5
    • /
    • pp.747-755
    • /
    • 2020
  • Background: Ginsenosides accumulation responses to temperature are critical to quality formation in cold-dependent American ginseng. However, the studies on cold requirement mechanism relevant to ginsenosides have been limited in this species. Methods: Two experiments were carried out: one was a multivariate linear regression analysis between the ginsenosides accumulation and the environmental conditions of American ginseng from different sites of China and the other was a synchronous determination of ginsenosides accumulation, overall DNA methylation, and relative gene expression in different tissues during different developmental stages of American ginseng after experiencing different cold exposure duration treatments. Results: Results showed that the variation of the contents as well as the yields of total and individual ginsenosides Rg1, Re, and Rb1 in the roots were closely associated with environmental temperature conditions which implied that the cold environment plays a decisive role in the ginsenoside accumulation of American ginseng. Further results showed that there is a cyclically reversible dynamism between methylation and demethylation of DNA in the perennial American ginseng in response to temperature seasonality. And sufficient cold exposure duration in winter caused sufficient DNA demethylation in tender leaves in early spring and then accompanied the high expression of flowering gene PqFT in flowering stages and ginsenosides biosynthesis gene PqDDS in green berry stages successively, and finally, maximum ginsenosides accumulation occurred in the roots of American ginseng. Conclusion: We, therefore, hypothesized that cold-induced DNA methylation changes might regulate relative gene expression involving both plant development and plant secondary metabolites in such cold-dependent perennial plant species.

Effects on Ginseng Growth and Ginsenoside Content in ICT-based Process Cultivation and Conventional Cultivation (ICT 기반의 공정재배와 관행재배에 있어서 인삼 생장 및 진세 노사이드 함량에 미치는 영향)

  • Kwang Jin Chang;Yeon Bok Kim;Hyun Jung Koo;Hyun Jin Baek;Eui Gi Hong;Su Bin Lee;Jeei Hye Choi;Hyo Yeon Son;Tae Young Kim;Dong Hyun Kim
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.25 no.2
    • /
    • pp.12-19
    • /
    • 2023
  • This study conducted an experiment with EC 1.0ms/cm ratio and excellent soil conditions for germination in ICT-based ginseng process cultivation. The first growth survey was conducted before transplantation of ginseng 1-year roots grown by seeding ginseng in the process cultivation, conventional cultivation and a second growth comparison survey was conducted after 3 months of growth. In the results, it was confirmed that ginseng grown in the process cultivation grew more than in the field. As a result of comparing the contents of 11 ginsenosides of 1-year and 2-year-old ginsenosides in the process cultivation and conventional cultivation ginseng, it was confirmed that the content of the process cultivation ginseng was higher than that of practice cultivation ginseng. In conclusion, conventional cultivation ginseng grows due to various factors under the natural cultivation environment, but process cultivation can secure the growth stability of ginseng by allowing stable soil and environmental control, so continuous research is needed in the future.

Extracting Conditions for Promoting Ginsenoside Contents and Taste of Red Ginseng Water Extract (홍삼 물 추출액의 사포닌 함량 및 맛의 증진을 위한 추출 조건)

  • Li, Xiangguo;Han, Jin-Soo;Park, Yong-Jun;Kang, Sun-Joo;Kim, Jung-Sun;Nam, Ki-Yeul;Lee, Ki-Teak;Choi, Jae-Eul
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.54 no.3
    • /
    • pp.287-293
    • /
    • 2009
  • In this study, red ginseng extract solutions were analyzed to set up the functional saponin content and quality optimization condition. The highest saponin content among the total red ginseng extracts was 64.6 mg / 100 ml which was extracted at $75^{\circ}C$ for 18 hours. In addition, the saponin content decreased according to the increased extraction temperature and time. The highest total content of $Rb_2$ and Re was 11.8 mg / 100 ml at $75^{\circ}C$ for 12 hours which decreased according to the increased extraction temperature and time. The prosapogenin content of red ginseng extract was increased at $75^{\circ}C$ and $85^{\circ}C$ while the content decreased at $95^{\circ}C$, in which the highest prosapogenin content was 34.9 mg / 100 ml at $85^{\circ}C$ for 24 hours. The total sugar content and cloudness were increased according to the increased extraction time at $95^{\circ}C$, but pH and hue value were decreased according to the increased extracted time. The highest sweetness content was 4.0% which was found at $95^{\circ}C$ for 24 hours extract. Therefore, the most appropriate red ginseng extracting method was lower the temperature for saponin content at first time in combination with raise the temperature for taste at second time.

Studies on Selective Modulators and Anti-anorexigenic Agents in Korean Red Ginseng (한, 일 고려인삼 심포지움)

  • Hiromichi Okuda;Keizo Sekiya;Hiroshi Masuno;Takeshi Takaku;Kenji Kameda
    • Journal of Ginseng Research
    • /
    • v.11 no.2
    • /
    • pp.145-252
    • /
    • 1987
  • Isolated rat adipocytes are well known to possess opposite pathways of lipid metabolism: lipolysis and ipogenesis. Both of the metabolism respond to various biologically active substances such as epinephrine, ACTH and insulin. Epinephrine and ACTH stimulate lipolysis and insulin accelerates lipogenesis. Recently, Korean red ginseng powder was found to contain adenosine and an acidic poptide which inhibited epinephrine-induced lipolysis and sl imulated insulin-mediated lipogenesis from added glucose. The acidic peptide is consisted mainly of glutamic acid and glucose. Ginsenosides Rb1 and Re inhibited ACTH-induced lipolysis in isolated rat adipocytes, while they did not affect insulinstimulated lipogenesis, Thus, all these substances extracted from Korean red ginseng exhibited selective modulations toward the opposite metabolic pathways in rat adipocyte; They inhibited the lipolysis but not the lipogenesis. We call these substances"selective modulators". Recently, we isolated a toxic substance named "toxohormone-L " from ascites fluid of patients with various malignant tumors. The toxohormone-L stimulated lipolysis in rat adipocytes and induced anorexia in rats. Both the lipolytic and the anorexigenic actions of toxohormone-L were found to be inhibited by ginsenoside Rb2 in Korean red ginseng. Based on these results, physiological signifi¬cances of these substances in Korean red ginseng were discussed. Pan ax ginseng is a medicinal plant long used in treatment of various pathological states including general complaints such as head ache, shoulder ache, chilly constitution and anorexia in cancer patients, There have been many pharmacological studies on Panax ginseng roots. Petkovllreported that oral administration of an aqueous alcoholic extract of ginseng roots decreased the blood sugar levtl of rabbits. Saito2lreported that Panax ginseng suppressed hyperglycemia induced by epinephrine and high carbohydrate diets. These findings suggest that Panax ginseng roots contain insulin-like substances. Previously, we demonstrated that gin¬seng roots contain an insulin-like peptide which inhibits epinephrine-induced lipolysis and stimulated insulin-mediated lipogenesis. In 1984, we suggested that such an insulin-like substance should be called a selective modulator4). Present investigation describes the details of the selective modulators in ginseng roots. During progressive weight loss in patients with various neoplastic disease, depletion of fat stores have been observed. The depletion of body fat during growth of neoplasms is associated with increase in plasma free fatty acids. Recently, we found that the ascites fluid from patients with hepatoma or ovarian tumor and the pleural fluid from patients with malignant lymphoma elicited fatty acid release in slices of rat adipose tissue in vitro. The lipolytic factor, named"toxohormone-L". was purifed from the ascites fluid of patients with hepatoma. The isolated preparation gave a single band on both disc gel electrophoresis and sodium dodecyl sulfate(SDS)-acrylamide gel electrophoresis in the presence of ${\beta}$-mercaptoethanol. Its molecular weight was determined to be 70,000-75,000 and 65,000 by SDS-acrylamide gel electrophoresis and analytical ultracentrifugation, respectively. Injection of toxohormone-L into the lateral ventricle of rats significantly suppressed food and water intakes. There was at least 5 hr delay between its injection and appearance of its suppressive effect. In the present study, we also tried to find a inhibitory substance toward toxohormone-L from root powder of ginseng.

  • PDF

Effects of Extraction Temperature and Time on Saponin Content and Quality in Raw Ginseng (Panax ginseng) Water Extract (수삼의 추출 온도 및 시간이 물 추출액의 사포닌 함량 및 품질에 미치는 영향)

  • Han, Jin-Soo;Li, Xiangguo;Park, Yong-Jun;Kang, Sun-Joo;Nam, Ki-Yeul;Choi, Jae-Eul
    • Korean Journal of Medicinal Crop Science
    • /
    • v.17 no.5
    • /
    • pp.352-356
    • /
    • 2009
  • In this study, raw ginseng water extract solutions were analyzed to set up the functional saponin content and quality optimization condition. The highest saponin content among the total raw ginseng water extracts was $74.6\;mg/100\;m{\ell}$ which was extracted at $75^{\circ}C$ for 24 hours. In addition, the saponin content decreased according to the increased extraction temperature and time. The highest total content of $Rb_2$ and Re was $19.9\;mg/100\;m{\ell}$ at $75^{\circ}C$ for 12 hours which decreased according to the increased extracted temperature and time. The highest prosapogenin ($Rg_2\;+\;Rg_3\;+\;Rh_1$) content among the total raw ginseng water extracts was $28.6\;mg/100\;m{\ell}$ which was extracted at $85^{\circ}C$ for 36 hours. The reducing sugar content, sweetness and turbidity were increased according to the increased extraction temperature and time. But pH were decreased according to the increased extracted time.

Ginsenosides Decrease β-Amyloid Production via Potentiating Capacitative Calcium Entry

  • Yoon Young Cho;Jeong Hill Park;Jung Hee Lee;Sungkwon Chung
    • Biomolecules & Therapeutics
    • /
    • v.32 no.3
    • /
    • pp.301-308
    • /
    • 2024
  • Alzheimer's disease (AD) is a progressive and irreversible neurodegenerative disorder characterized by extracellular amyloid plaques composed of amyloid β-peptide (Aβ). Studies have indicated that Ca2+ dysregulation is involved in AD pathology. It is reported that decreased capacitative Ca2+ entry (CCE), a refilling mechanism of intracellular Ca2+, resulting in increased Aβ production. In contrast, constitutive activation of CCE could decrease Aβ production. Panax ginseng Meyer is known to enhance memory and cognitive functions in healthy human subjects. We have previously reported that some ginsenosides decrease Aβ levels in cultured primary neurons and AD mouse model brains. However, mechanisms involved in the Aβ-lowering effect of ginsenosides remain unclear. In this study, we investigated the relationship between CCE and Aβ production by examining the effects of various ginsenosides on CCE levels. Aβ-lowering ginsenosides such as Rk1, Rg5, and Rg3 potentiated CCE. In contrast, ginsenosides without Aβ-lowering effects (Re and Rb2) failed to potentiate CCE. The potentiating effect of ginsenosides on CCE was inhibited by the presence of 2-aminoethoxydiphenyl borate (2APB), an inhibitor of CCE. 2APB alone increased Aβ42 production. Furthermore, the presence of 2APB prevented the effects of ginsenosides on Aβ42 production. Our results indicate that ginsenosides decrease Aβ production via potentiating CCE levels, confirming a close relationship between CCE levels and Aβ production. Since CCE levels are closely related to Aβ production, modulating CCE could be a novel target for AD therapeutics.

Physicochemical characteristics of Sengmaksan added with Liriope platyphylla roasted for different times (덖음 처리 시간을 달리한 맥문동을 첨가한 생맥산의 이화학적 특성)

  • Kim, Gyeong-Wha;Kang, Min-Jung;Kang, Jae-Ran;Shin, Jung-Hye
    • Food Science and Preservation
    • /
    • v.25 no.1
    • /
    • pp.62-70
    • /
    • 2018
  • This study investigates, the physicochemical characteristics of Sengmaksan (SM) prepared with Liriope platyphylla (LP) that had been roasted for different times (0, 30, 60, and 90 min, denoted as S-0, S-30, S-60, and S-90, respectively) The Hunter's color values such as lightness (L), redness (a), and yellowness (b) were the highest in S-0, while the lowest was found in S-90. The amount of soluble solid and reducing sugar content of S-60 were higher than the others. None of the samples exhibit significant differences in, their pH and acidity. The total content of phenolic compounds increased with the LP roasting time, but the total flavonoid and total anthocyanin contents of the SM decreased at the same time. The total ginsenoside (Ro, Rb2, Re, Rf, Rg1, Rg2, Rg3, Rh1, and Rh2) content did not show significant differences. The DPPH and ABTS radical scavenging activities increased according to the concentration, as well as with the LP roasting time. The ferric reducing antioxidant power (FRAP) showed trends similar to the radical scavenging activity, but it was more sensitive to the LP roasting time. From these results, the active ingredient in S-60 was higher, and the antioxidant activities of SM increased along with the roasting time of LP.